胡国平,张丹,苏喻,刘青文,李佳,王瑞. 试题知识点预测:一种教研知识强化的卷积神经网络模型[J]. 中文信息学报, 2018, 32(5): 137-146.
HU Guoping, ZHANG Dan, SU Yu, LI Jia, LIU Qingwen, WANG Rui. Predicting Knowledge Points of Questions: an Expertise-Enriched CNN Model. , 2018, 32(5): 137-146.
Predicting Knowledge Points of Questions: an Expertise-Enriched CNN Model
HU Guoping1, ZHANG Dan1,3, SU Yu1,2, LI Jia1, LIU Qingwen1, WANG Rui1
1.IFLYTEK Co., Ltd., Hefei, Anhui 230088, China; 2.School of Computer Science and Technology, Anhui University, Hefei, Anhui 230039, China; 3.School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
Abstract:In online learning systems, to offer students better learning services, a fundamental task is predicting questions’ knowledge points, i.e., predicting the knowledge concepts or skills of a question. Existing methods for this task usually rely on human labeling or traditional machine learning methods, They are defected in either labor intensive or focusing only on shallow features without capturing the deep semantic relations between questions and knowledge points. In this paper, we propose an Expertise-enriched Convolutional Neural Network(ECNN)to predict questions’ knowledge points. Specifically, we first define and extract question features under the guidance of educational experience. Then, we leverage a convolutional neural network to exploit question representations from deep sematic perspective. After that, considering the relations between questions and expertise priors, we develop an attention based method for calculating the importance of expertise for questions. At last, we design an objective function for model learning that constrains both knowledge points and semantics. Extensive experiments on a large-scale dataset demonstrate the effectiveness of the proposed model, showing a good application value.
[1] 冯建军. 论个性化教育的理念[J]. 教育科学, 2004, 20(2): 11-14. [2] Hong, Chin Ming, et al. Intelligent Web-based Tutoring System with Personalized Learning Path Guidance[J]. Computers and Education,2008,51(2): 787-814. [3] 刘淇,陈恩红,等.面向个性化学习的学生认知能力分析[J].中国计算机学会通讯, 2017,4(13): 28-35. [4] 朱天宇,黄振亚,陈恩红,等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017(1): 176-191. [5] Rupp Andre A, J Templin. The Effects of Q-Matrix Misspecification on Parameter Estimates and Classification Accuracy in the DINA Model[J]. Educational& Psychological Measurement, 2008,68(1): 78-96. [6] 王晓华, 文剑冰. 项目反应理论在教育考试命题质量评价中的应用[J]. 教育科学, 2010, 26(3): 20-26. [7] Tatsuoka K K. Rule Spaec: An Approach for Dealing with Misconceptions Based on Item Response Theory[J]. Journal of Educational Measurement, 1983, 20(4): 345-354. [8] 胡韧奋. 汉语词汇测试自动命题研究[J]. 中文信息学报, 2017, 31(1): 41-49. [9] 陈志鹏, 陈文亮. 基于文档发散度的作文跑题检测[J]. 中文信息学报, 2017, 31(1): 23-30. [10] Hermann K M,Koˇcisk T, Grefenstette E, et al. Teaching machines to read and comprehend[J]. Computer Science. 2015: 1693-1701. [11] Piech C, Spencer J, Huang J, et al. Deep Knowledge Tracing[J]. Computer Science, 2015, 3(3): 19-23. [12] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[J]. arXiv preprint arXiv: 1409.0473, 2014. [13] Soucy P, Mineau G W. Beyond TFIDF weighting for text categorization in the vector space model[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc.2005: 1130-1135. [14] Hu Y. A Bayes Text Classification Method Based on Vector SpaceModel[J]. Computer & Digital Engineering, 2004. [15] 毛伟, 徐蔚然, 郭军. 基于n-gram语言模型和链状朴素贝叶斯分类器的中文文本分类系统[J]. 中文信息学报, 2006, 20(3): 29-35. [16] Joachims T. Transductive Inference for Text Classification using Support Vector Machines[C]//Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc.1999: 200-209. [17] 朱远平, 戴汝为. 基于SVM决策树的文本分类器[J]. 模式识别与人工智能, 2005, 18(4): 000412-416. [18] Zhang Y F, He C. Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM[C]//Proceedings of the International Workshop on Intelligent Systems and Applications. IEEE, 2010: 1-5. [19] Li W B, Sun L, Zhang D K. Text Classification Based on Labeled-LDAModel[J]. Chinese Journal of Computers, 2008, 31(4): 620-627. [20] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems. Curran Associates Inc.2012: 1097-1105. [21] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the International Conference on Neural Information Processing Systems. Curran Associates Inc.2013: 3111-3119. [22] Su Z, Xu H, Zhang D, et al. Chinese sentiment classification using a neural network tool— Word2vec[C]//Proceedings of the International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. IEEE, 2014: 1-6. [23] Bengio Yoshua, P Vincent, C Janvin. A neural probabilistic language model[J]. Journal of Machine Learning Research. 2003,3(6): 1137-1155. [24] 刘龙飞, 杨亮, 张绍武,等. 基于卷积神经网络的微博情感倾向性分析[J]. 中文信息学报, 2015, 29(6): 159-165. [25] Zhang M L, Zhou Z H. ML-KNN: A lazy learning approach to multi-labellearning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.