Abstract:Machine reading comprehension is a challenging task in natural language processing. Focused on fragment-extractive reading comprehension, this paper proposes an attention reading comprehension model based on multi-connect mechanism. The model more effectively exerts the role of attention mechanism in fragment extraction machine reading comprehension tasks through multiple connections. This model achieves an EM score of 71.175 and an F1 value of 88.090 in the final test data set of the Second Evaluation Workshop on Chinese Machine Reading Comprehension, CMRC 2018, ranking second.
[1] Dhingra B, Liu H, Yang Z, et al. Gated-attention readers for text comprehension[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017:1832-1846. [2] Sordoni A, Bachman P, Trischler A, et al. Iterative alternating neural attention for machine reading[J]. arXiv preprint arXiv: 1606.02245, 2016. [3] Shen Y, Huang P S, Gao J, et al. Reasonet: Learning to stop reading in machine comprehension[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017:1047-1055. [4] Cui Y, Liu T, Xiao L, et al. A span-extraction dataset for Chinese machine reading comprehension[J]. arXiv preprint arXiv: 1810.07366, 2018. [5] Hermann K M, Kocisky T, Grefenstette E, et al. Teaching machines to read and comprehend[C]//Proceedings of the Advances in Neural Information Processing systems,2015:1693-1701. [6] Hill F, Bordes A, Chopra S, et al. The goldilocks principle: Reading children's books with explicit memory representations[J]. arXiv preprint arXiv: 1511.02301, 2015. [7] Cui Y, Liu T, Chen Z, et al. Dataset for the first evaluation on Chinese machine reading comprehension[J]. arXiv preprint arXiv: 1709.08299, 2017. [8] Rajpurkar P, Zhang J, Lopyrev K, et al. SQuAD: 100,000+ questions for machine comprehension of text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:2383-2392. [9] Nguyen T, Rosenberg M, Song X, et al. MS MARCO: A human generated machine reading comprehension dataset[J]. arXiv preprint arXiv: 1611.09268, 2016. [10] He W, Liu K, Liu J, et al.DuReader: A chinese machine reading comprehension dataset from real-world applications[C]//Proceedings of the Workshop on Machine Reading for Question Answering,2018:37-46. [11] Bahdanau D, Cho K, Bengio Y.Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv: 1409.0473, 2014. [12] Kadlec R, Schmid M, Bajgar O, et al. Text understanding with the attention sum reader network[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:908-918. [13] Seo M, Kembhavi A, Farhadi A, et al. Bidirectional attention flow for machine comprehension[J]. arXiv preprint arXiv: 1611.01603, 2016. [14] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv: 1301.3781, 2013. [15] Weissenborn D, Wiese G, Seiffe L. Making neural QA as simple as possible but not simpler[C]//Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017),2017:271-280. [16] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: 1412.3555, 2014. [17] Cui Y, Chen Z, Wei S, et al. Attention-over-attention neural networks for reading comprehension[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,2017:593-602. [18] Vinyals O, Fortunato M, Jaitly N. Pointer networks[C]//Proceedings of the Advances in Neural Information Processing Systems,2015:2692-2700. [19] Shao C C, Liu T, Lai Y, et al. Drcd: A Chinese machine reading comprehension dataset[J]. arXiv preprint arXiv: 1806.00920, 2018. [20] Srivastava N, Hinton G,Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [21] Kingma D P, Ba J. Adam: a method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2014.