面向司法案件的案情知识图谱自动构建

洪文兴,胡志强,翁洋,张恒,王竹,郭志新

PDF(3873 KB)
PDF(3873 KB)
中文信息学报 ›› 2020, Vol. 34 ›› Issue (1) : 34-44.
知识表示与知识获取

面向司法案件的案情知识图谱自动构建

  • 洪文兴1,胡志强1,翁洋2,张恒3,王竹4,郭志新5
作者信息 +

Automated Knowledge Graph Construction for Judicial Case Facts

  • HONG Wenxing1, HU Zhiqiang1, WENG Yang2, ZHANG Heng3, WANG Zhu4, GUO Zhixin5
Author information +
History +

摘要

以法学知识为中心的认知智能是当前司法人工智能发展的重要方向。该文提出了以自然语言处理(NLP)为核心技术的司法案件案情知识图谱自动构建技术。以预训练模型为基础,对涉及的实体识别和关系抽取这两个NLP基本任务进行了模型研究与设计。针对实体识别任务,对比研究了两种基于预训练的实体识别模型;针对关系抽取任务,该文提出融合平移嵌入的多任务联合的语义关系抽取模型,同时获得了结合上下文的案情知识表示学习。在“机动车交通事故责任纠纷”案由下,和基准模型相比,实体识别的F1值可提升0.36,关系抽取的F1值提升高达2.37。以此为基础,该文设计了司法案件的案情知识图谱自动构建流程,实现了对数十万份判决书案情知识图谱的自动构建,为类案精准推送等司法人工智能应用提供语义支撑。

Abstract

Legal knowledge centered cognitive intelligence is an important topic for judicial artificial intelligence. This paper proposes an automated knowledge graph construction approach for judicial case facts. Based on the pre-training model, models for entity recognition and relation extraction are presented. For the entity recognition task, two pre-training based entity recognition models are compared. For the relation extraction task, a multi-task joint semantic relation extraction model is proposed incorporating translating embeddings. The knowledge representation learning of case facts is obtained while completing the relation extraction task. For “motor vehicle traffic accident liability dispute”, compared with the baseline model, the entity recognition can be increased by 0.36 in F1 score, and the relation extraction by 2.37 F1 score. Based on the proposed method, a case facts knowledge graphs are established on a couple of hundred thousand judicial documents, enabling the semantic computing for judicial artificial intelligence applications such as case retrieval.

关键词

司法案件 / 知识图谱 / 实体识别 / 关系抽取

Key words

judicial case / knowledge graph / entity recognition / relation extraction

引用本文

导出引用
洪文兴,胡志强,翁洋,张恒,王竹,郭志新. 面向司法案件的案情知识图谱自动构建. 中文信息学报. 2020, 34(1): 34-44
HONG Wenxing, HU Zhiqiang, WENG Yang, ZHANG Heng, WANG Zhu, GUO Zhixin. Automated Knowledge Graph Construction for Judicial Case Facts. Journal of Chinese Information Processing. 2020, 34(1): 34-44

参考文献

[1]Bollacker K, Evans C, Paritosh P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008: 1247-1250.
[2]Vrandeic D, Krtzsch M. Wikidata: a free collaborative knowledge base[J]. Communications of the ACM, 2014, 57(10): 78-85.
[3]Bizer C, Lehmann J, Kobilarov G, et al. DBpedia -a crystallization point for the web of data [J]. Journal of Web Semantics, 2009, 7(3): 154-165.
[4]Suchanek F M, Kasneci G, Weikum G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, 2007: 697-706.
[5]Niu X, Sun X, Wang H, et al. Zhishi.me -weaving Chinese linking open data[C]//Proceedings of the 10th International Semantic Web Conference, 2011: 205-220.
[6]Xu B, Xu Y, Liang J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//Proceedings of International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 2017: 428-438.
[7]Tang J, Zhang J, Yao L, et al. ArnetMiner: extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008: 990-998.
[8]Wang R, Yan Y, Wang J, et al. AceKG: a large-scale knowledge graph for academic data mining[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 1487-1490.
[9]Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J/OL]. arXiv preprint arXiv: 1508.01991, 2015.
[10]Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 260-270.
[11]Strubell E, Verga P, Belanger D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017: 2670-2680.
[12]Ma X, Hovy E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1064-1074.
[13]Chiu J P C, Nichols E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
[14]Zhang S, Zheng D, Hu X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, 2015: 73-78.
[15]Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 207-212.
[16]Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers, 2014: 2335-2344.
[17]Shen Y, Huang X. Attention-based convolutional neural network for semantic relation extraction[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 2526-2536.
[18]Wang L, Cao Z, De Melo G, et al. Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1298-1307.
[19]Zhang X, Chen F, Huang R. A combination of RNN and CNN for attention-based relation classification[J]. Procedia Computer Science, 2018, 131: 911-917.
[20]Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 3111-3119.
[21]Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[22]Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018: 2227-2237.
[23]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5998-6008.
[24]Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training[J/OL]. 2018, https: //s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf.
[25]Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv: 1810.04805, 2018.
[26]Alt C, Hübner M, Hennig L. Improving relation extraction by pre-trained language representations[C]//Proceedings of the 2019 Conference on Automated Knowledge Base Construction, 2019.
[27]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[28]Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint arXiv: 1607.06450, 2016.
[29]Lafferty J, McCallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, 2001: 282-289.
[30]Forney G D. The viterbi algorithm[C]//Proceedings of the IEEE, 1973, 61(3): 268-278.
[31]Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[32]Stenetorp P, Pyysalo S, Topic G, et al. BRAT: a web-based tool for NLP-assisted text annotation[C]//Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, 2012: 102-107.
[33]Micikevicius P, Narang S, Alben J, et al. Mixed precision training[C]//Proceedings of International Conference on Learning Representations, 2017.
[34]Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[35]Hendrickx I, Kim S N, Kozareva Z, et al. Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals[C]//Proceedings of the 5th International Workshop on Semantic Evaluation, 2010: 33-38.

基金

国家重点研发计划(2018YFC0830300);福建省科技计划(2018H0035);厦门市科技计划(3502Z20183011)
PDF(3873 KB)

2373

Accesses

0

Citation

Detail

段落导航
相关文章

/