张伟生,王中卿,李寿山,周国栋. 基于对话结构和联合学习的情感和意图分类[J]. 中文信息学报, 2020, 34(8): 105-112.
ZHANG Weisheng, WANG Zhongqing, LI Shoushan, ZHOU Guodong. Joint Model for Sentiment and Act Classification Using Dialog Structure. , 2020, 34(8): 105-112.
基于对话结构和联合学习的情感和意图分类
张伟生,王中卿,李寿山,周国栋
苏州大学 计算机科学与技术学院,江苏 苏州 215006
Joint Model for Sentiment and Act Classification Using Dialog Structure
ZHANG Weisheng, WANG Zhongqing, LI Shoushan, ZHOU Guodong
School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
Abstract:A correlation is usually exist between speaker’s sentiment and act in daily dialogs, which could also be reflected in the dialogue structure. Therefore, we propose a joint model to classify the sentiment and act in each utterance by using the dialog structure. Moreover, we use the attention mechanism to capture the impact of the structure of dialog on the sentiment of each utterance. Experiments show that the proposed model outperforms the state-of-the-art models in both dialog sentiment classification and act classification.
[1] Ruusuvuori J. Emotion, affect and conversation[M]. The Handbook of Conversation Analysis, 2013. [2] Zhang L, Erickson L B, Webb H C. Effects of "emotional text" on online customer service chat[C]//Proceedings of Graduate Student Research Conference in Hospitality and Tourism, 2011:1-8. [3] Wilson T, Wiebe J, Hoffmann P. Recognizing contextualpolarity in phrase-level sentiment analysis[J]. Proceedings of HLT/EMNLP-05, 2005, 7(5):347-354. [4] Craggs R, Wood M M G. A categorical annotation scheme for emotion in the linguistic content of dialogue[C]//Proceedings of Tutorial and Research Workshop on Affective Dialogue Systems. Springer, Berlin, Heidelberg, 2004: 89-100. [5] Matsumoto K, Ren F,Kuroiwa S, et al. Emotion estimation algorithm based on interpersonal emotion included in emotional dialogue sentences[C]//Proceedings of the Mexican International Conference on Artificial Intelligence. Springer, Berlin, Heidelberg, 2007: 1035-1045. [6] Herzig J,Feigenblat G, Shmueli-Scheuer M, et al. Classifying emotions in customer support dialogues in social media[C]//Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2016: 64-73. [7] Cerisara C, Jafaritazehjani S, Oluokun A, et al. Multi-task dialog act and sentiment recognition on Mastodon[J]. arXiv preprint arXiv:1807.05013, 2018. [8] Majumder N,Poria S, Peng H, et al. Sentiment and sarcasm classification with multitask learning[J]. arXiv preprint arXiv:1901.08014, 2019. [9] Stolcke A, Ries K, Coccaro N, et al. Dialogue act modeling for automatic tagging and recognition of conversational speech[J]. Computational Linguistics, 2000, 26(3): 339-373. [10] Lendvai P, Geertzen J. Token-based chunking of turn-internal dialogue act sequences[C]//Proceedings of the 8th SIGDIAL Workshop on Discourse and Dialogue, 2007: 174-181. [11] Ji Y,Haffari G, Eisenstein J. A latent variable recurrent neural network for discourse relation language models[J]. arXiv preprint arXiv:1603.01913, 2016. [12] Khanpour H, Guntakandla N, Nielsen R. Dialogue act classification in domain-independent conversations using a deep recurrent neural network[C]//Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 2016: 2012-2021. [13] Can A E. Unsupervised dialogue act modeling for tutorial dialogue systems[M].Norch Carolina State Uniersity,2015. [14] Lee J Y,Dernoncourt F. Sequential short-text classification with recurrent and convolutional neural networks[J]. arXiv preprint arXiv:1603.03821,2016. [15] Kalchbrenner N, Blunsom P. Recurrent convolutional neural networks for discourse compositionality[J]. arXiv preprint arXiv:1306.3584, 2013. [16] Kumar H, Agarwal A, Dasgupta R, et al. Dialogue act sequence labeling using hierarchical encoder withcrf[C]//Proceedings of 32nd AAAI Conference on Artificial Intelligence, 2018. [17] Li Y,Su H, Shen X, et al. Dailydialog: A manually labelled multi-turn dialogue dataset[J]. arXiv preprint arXiv:1710.03957, 2017. [18] Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014. [19] Wang Y, Feng S, Wang D, et al. Context-aware Chinese microblog sentiment classification with bidirectional LSTM[C]//Proceedings of the Asia-Pacific Web Conference. Springer, Cham, 2016: 594-606. [20] Hazarika D,Poria S, Mihalcea R, et al. ICON: Interactive conversational memory network for multimodal emotion detection[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 2594-2604.