Abstract:Graph neural networks(GNN) recently appears to be an effective method to model the global context representation of samples, but defected in over-smoothing when faced with the noisy few-shot text classification scenario. We propose a dual channel graph neural network to model the full context features while making full use of the label propagation mechanism. A multi-task parameter sharing mechanism is used in the dual channels to effectively constrain the graph iteration process. Compared with the baseline graph neural network, our method achieves an average improvement of 1.51% on the FewRel dataset and 11.1% improvement on the ARSC dataset.
[1] Wang Y, Yao Q, Kwok J, et al. Generalizing from a few examples: A survey on few-shot learning[M].arXiv: 1904.05046, 2019. [2] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[C]//Proceedings of Advances in Neural Information Processing Systems, 2016: 3630-3638. [3] Koch G,Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition[C]//Proceedings of the ICML Deep Learning Workshop, 2015. [4] Snell J,Swersky K, Zemel R. Prototypical networks for few-shot learning[C]//Proceedings of Advances in Neural Information Processing Systems, 2017: 4077-4087. [5] Sung F, Yang Y, Zhang L, et al. Learning to compare: Relation network for few-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1199-1208. [6] Kang B, Liu Z, Wang X,et al. Few-shot object detection via feature reweightin[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 8420-8429. [7] Garcia V, Bruna J. Few-shot learning with graph neural networks[J]. arXiv preprint arXiv:1711.04043, 2017. [8] 王盛玉,曾碧卿,商齐,等. 基于词注意力卷积神经网络模型的情感分析研究[J]. 中文信息学报, 2018, 32(9): 123-131. [9] Chen D, Lin Y, Li W, et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[C]//Proceedings of the AAAI, 2020: 3438-3445. [10] 李欣,李旸,王素格. 面向情感聚类的文本相似度计算方法研究[J]. 中文信息学报, 2018, 32(5): 97-104. [11] 胡艳霞,王成,李弼程,等. 基于多头注意力机制Tree-LSTM的句子语义相似度计算[J]. 中文信息学报, 2020, 34(3): 23-33. [12] Finn C,Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135. [13] Liu Y, Lee J, Park M, et al. Learning to propagate labels:Transductive propagation network for few-shot learning[J]. arXiv preprint arXiv:1805.10002, 2018. [14] Zhou D,Bousquet O, Lal T N, et al. Learning with local and global consistency[C]//Proceedings of the Advances in Neural Information Processing Systems, 2004: 321-328. [15] Chapelle O, Weston J, Schlkopf B. Cluster kernels for semi-supervised learning[C]//Proceedings of the Advances in Neural Information Processing Systems, 2003: 601-608. [16] Gao T, Han X, Liu Z, et al. Hybrid attention based prototypical networks for noisy few-shot relation classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 6407-6414. [17] Geng R, Li B, Li Y, et al. Few-shot text classification with induction network[J]. arXiv preprint arXiv:1902.10482, 2019. [18] Han X, Zhu H, Yu P, et al.Fewrel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation[J]. arXiv preprint arXiv:1810.10147, 2018. [19] Blitzer J,Dredze M, Pereira F, et al. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification[C]//Proceedings of Meeting of the Association for Computational Linguistics, 2007: 440-447. [20] Gilmer J,Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1263-1272. [21] Sun Y, Cheng C, Zhang Y, et al. Circle loss: A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6398-6407. [22] Yu M,Guo X, Yi J, et al. Diverse few-shot text classification with multiple metrics[J]. arXiv preprint arXiv:1805.07513, 2018. [23] Gao T, Han X, Zhu H, et al.FewRel 2.0: Towards more challenging few-shot relation classification[J]. arXiv preprint arXiv:1910.07124, 2019.