刘超,韩锐,刘小洋,黄贤英. 基于时空注意力的社交网络信息级联预测模型[J]. 中文信息学报, 2021, 35(8): 117-126.
LIU Chao, HAN Rui, LIU Xiaoyang, HUANG Xianying. Spatio-temporal Attention Based Information Cascade Prediction for Social Network. , 2021, 35(8): 117-126.
基于时空注意力的社交网络信息级联预测模型
刘超,韩锐,刘小洋,黄贤英
重庆理工大学 计算机科学与工程学院,重庆 400054
Spatio-temporal Attention Based Information Cascade Prediction for Social Network
LIU Chao, HAN Rui, LIU Xiaoyang, HUANG Xianying
School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
Abstract:Existing information cascade prediction models are established by cascaded time series information or spatial topology. A social network-oriented information cascade prediction (Information Cascade Prediction, ICP) model is proposed to jointly model these two information based on deep learning. First, the Laplacian matrix is used to sample the cascaded nodes to generate a spatial sequence. Then the timing information and spatial structure information of the nodes are learned through the Bi-LSTM plus the graph convolutional network. And the information is finally cascaded through the attention mechanism. Experimental results show that the proposed model has higher prediction accuracy compared with existing method, reducing prediction error by about 1% to 8%.
[1] Shen H W, Wang D, Song C, et al. Modeling and predicting popularity dynamics via reinforced Poisson processes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, 14: 291-297. [2] Leskovec J, McGlohon M, Faloutsos C, et al. Patterns of cascading behavior in large blog graphs[C]//Proceedings of the SIAM International Conference on Data Mining, 2007: 551-556. [3] Golub B, Jackson M O. Using selection bias to explain the observed structure of internet diffusions[C]//Proceedings of the National Academy of Sciences, 2010, 107(24): 10833-10836. [4] Cao Q, Shen H, Cen K, et al. DeepHawkes: Bridging the gap between prediction and understanding of information cascades[C]//Proceedings of the ACM on Conference on Information and Knowledge Management, 2017: 1149-1158. [5] Li C, Ma J, Guo X, et al. Deepccas: An end-to-end predictor of information cascades[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 577-586. [6] Leskovec J, Adamic L A, Huberman B A. The dynamics of viral marketing[J]. ACM Transactions on the Web, 2007, 1(1): Article5. [7] Tang J, Tang X, Xiao X, et al. Online processing algorithms for influence maximization[C]//Proceedings of the International Conference on Management of Data. ACM, 2018: 991-1005. [8] Li H, Ma X, Wang F, et al. On popularity prediction of videos shared in online social networks[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, 2013: 169-178. [9] Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. [10] Liu Y, Wu Y F B. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018: 354-361. [11] Ohsaka N, Sonobe T, Fujita S, et al. Coarsening massive influence networks for scalable diffusion analysis[C]//Proceedings of the ACM International Conference on Management of Data, 2017: 635-650. [12] Wang Y, Shen H, Liu S, et al. Learning user-specific latent influence and susceptibility from information cascades[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 477-483. [13] Bao P, Shen H W, Huang J, et al. Popularity prediction in microblogging network: A case study on sinaweibo[C]//Proceedings of the 22nd International Conference on World Wide Web, 2013: 177-178. [14] Chen X, Zhou F, Zhang K, et al. Information diffusion prediction via recurrent cascades convolution[C]//Proceedings of the 35th IEEE International Conference on Data Engineering, IEEE, 2019: 770-781. [15] Wang J, Zheng V W, Liu Z, et al. Topological recurrent neural network for diffusion prediction[C]//Proceedings of the IEEE International Conference on Data Mining, IEEE, 2017: 475-484. [16] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J/OL]. arXiv preprint arXiv: 1609.02907, 2016. [17] Qiu J, Tang J, Ma H, et al. Deepinf: Social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018: 2110-2119. [18] Chen L, Zhang H, Xiao J, et al. Scacnn: Spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5659-5667. [19] You Q, Jin H, Wang Z, et al. Image captioning with semantic attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4651-4659. [20] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st Internation Conference on Neural Information Processing Systems, 2017: 6000-6010. [21] Wang Z, Chen C, Li W. Attention network for information diffusion prediction[C]//Proceedings of the Web Conference 2018, 2018: 65-66. [22] Fan W, Ma Y, Li Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the World Wide Web Conference 2019. ACM, 2019: 417-426. [23] Atwood J, Towsley D. Diffusion-convolutional neural networks[C]//Proceedings of the 30th Conference on Neural Information Processing Systems, 2016: 1993-2001. [24] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Datadriven traffic forecasting[J/OL]. arXiv preprint arXiv: 1707.01926, 2017. [25] Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: Densification laws, shrinking diameters and possible explanations[C]//Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005: 177-187.