Progress of Judicial Judgment Prediction Based on Artificial Intelligence
WANG Wanzhen1,2, RAO Yuan1,2,3, WU Lianwei1,2,3, LI Xue1,2
1.Shenzhen Research Institute, Xi'an Jiaotong University, Shenzhen, Guangdong 518057, China; 2.Joint Artificial Intelligence Key Laboratory of Shaanxi Province, Xi'an, Shaanxi 710049, China; 3.Lab of Social Intelligence & Complex Data Processing, School of Software Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Abstract:Artificial intelligence is increasingly emphasized in judicial practices in recent years. Based on the literature on intelligent models for assisting judicial cases, this paper suggests the following six challenges in legal judgement decision prediction: multi-feature crime prediction, multi-label crime prediction, multiple sub-task processing, unbalanced data issue, the interpretability of decision prediction and the adaption of existing algorithms to different types of cases. Meanwhile, the paper provides theoretical discussion, technical analysis, technical challenges as well as trend analysis for these problems. The datasets used in this field and the corresponding evaluation metrics are also summarized.
[1] 夏凯. 智慧法院建设问题与对策研究[J]. 法制博览, 2019, 000(034):161-162. [2] Kittler J, Hatef M, Duin P, et al. On combining classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239. [3] Zhong H, Guo Z, C Tu, et al. Legal judgment prediction via topological learning[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 3540-3549. [4] Liu C, Chang C, Ho J. Case instance generation and refinement for case-based criminal summary judgments in Chinese [J]. Journal of Information Science and Engineering, 2004, 20(4): 783-800. [5] Liu C, Hsieh C. Exploring phrase-based classification of judicial documents for criminal charges in Chinese[C]//Proceedings of the International Symposium on Methodologies for Intelligent Systems, 2006: 681-690. [6] Luo B, Feng Y, Xu J, et al. Learning to predict charges for criminal cases with legal basis[J]. arXiv preprint arXiv:1707.09168, 2017. [7] Shen Y,Sun J, Li X, et al. Legal article-aware end-to-end memory network for charge prediction[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering, 2018: 1-5. [8] Sukhbaatar S, Weston J, Fergus R. End-to-end memory networks[C]//Proceedings of the Advances in Neural Information Processing Systems, 2017: 2440-2448. [9] Long S, Tu C, Liu Z, et al. Automatic judgment prediction via legal reading comprehension[C]//Proceedings of the China National Conference on Chinese Computational Linguistics, 2018: 558-572. [10] Yang Z, Wang P, Zhang L, et al. A Recurrent attention network for judgment prediction[C]//Proceedings of the International Conference on Artificial Neural Networks, 2019: 253-266. [11] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [12] Xiao C, Zhong H, Guo Z, et al. Cail2018: A large-scale legal dataset for judgment prediction[J]. arXiv preprint arXiv:1807.02478, 2018. [13] Kang L, Liu J, Liu L, et al. Creating auxiliary representations from charge definitions for criminal charge prediction[J]. arXiv preprint arXiv:1911.05202, 2019. [14] Bao Q, Zan H, Gong P, et al. Charge prediction with legal attention[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, 2019: 447-458. [15] 刘宗林, 张梅山, 甄冉冉,等. 融入罪名关键词的法律判决预测多任务学习模型[J]. 清华大学学报:自然科学版, 2019, 59(07): 497-504. [16] Chen S, Wang P, Fang W, et al. Learning to predict charges for judgment with legal graph[C]//Proceedings of the International Conference on Artificial Neural Networks, 2019: 240-252. [17] Wei D, Lin L. An external knowledge enhanced multi-label charge prediction approach with label number learning[J]. arXiv preprint arXiv:1907.02205, 2019. [18] Yang W, Jia W, Zhou X, et al. Legal judgment prediction via multi-perspective bi-feedback network[J]. arXiv preprint arXiv:1905.03969, 2019. [19] Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014. [20] Li S, Zhang H, Ye L, et al. MANN: A multichannel attentive neural network for legal judgment prediction[J]. IEEE Access, 2019, 7(1):151144-151155. [21] Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014. [22] Hu Z, Li X, Tu C, et al. Few-shot charge prediction with discriminative legal attributes[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 487-498. [23] He C, Peng L, LEe Y, et al. SECaps: A sequence enhanced capsule model for charge prediction[C]//Proceedings of the International Conference on Artificial Neural Networks, 2019: 227-239. [24] Doshi-velez F, Kim B. Towards a rigorous science of interpretable machine learning[J]. arXiv preprint arXiv:1702.08608, 2017. [25] Molnar C. Interpretable Machine Learning[M]. USA: Lulu Press, 2019: 56-58. [26] Leila A, Franziska H, M Grégoire, et al. "What is relevant in a text document?": An interpretable machine learning approach[J]. Plos One, 2017, 12(8): e0181142-e0181147. [27] Jiang X, Ye H, Luo Z, et al. Interpretable rationale augmented charge prediction system[C]//Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, 2018: 146-151. [28] Ye H, Jiang X, Luo Z, et al. Interpretable charge predictions for criminal cases: Learning to generate court views from fact descriptions[J]. arXiv preprint arXiv:1802.08504, 2018. [29] Li J, Zhang G, Yu L, et al. Research and design on cognitive computing framework for predicting judicial decisions[J]. Journal of Signal Processing Systems, 2019, 91(10): 1159-1167. [30] Li J, Zhang G, Yan H, et al. A Markov logic networks based method to predict judicial decisions of divorce cases[C]//Proceedings of the 2018 IEEE International Conference on Smart Cloud (SmartCloud), 2018: 129-132. [31] Liu Z, Tu C, Sun M. Legal cause prediction with inner descriptions and outer hierarchies[C]//Proceedings of the China National Conference on Chinese Computational Linguistics, 2019: 573-586. [32] Wang P, Fan Y, Niu S, et al. Hierarchical matching network for crime classification[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 325-334. [33] Wang P, Yang Z, Niu S, et al. Modeling dynamic pairwise attention for crime classification over legal articles[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, 2018: 485-494.