基于上下文和位置交互协同注意力的文本情绪原因识别

徐秀,刘德喜

PDF(1142 KB)
PDF(1142 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (2) : 142-151.
情感分析与社会计算

基于上下文和位置交互协同注意力的文本情绪原因识别

  • 徐秀,刘德喜
作者信息 +

Context and Position Interactive Co-Attention Neural Network for Text Emotion Cause Detection

  • XU Xiu, LIU Dexi
Author information +
History +

摘要

文本情绪原因识别是情绪分析的重要研究任务,其目的是发现文本中个体情绪产生、变迁的原因。近年来,深度神经网络和注意力机制被广泛应用到情绪原因识别方法中,取得了较好的效果。但在这些工作中,文本中的语义信息以及上下文信息未能被充分学习,子句的相对位置信息也未被有效利用。因此,该文提出一种基于上下文和位置交互的协同注意力神经网络模型(Context and Position Interactive Co-Attention Neural Network,CPC-ANN)来识别情绪原因。该模型不仅通过Transformer网络的多头自注意力机制学习到不同的文本子句语义信息,还充分利用候选原因子句的邻近子句来获得更多的上下文信息。同时,该模型通过在子句的每个词向量中嵌入相对位置信息,为文本情绪原因识别提供线索。在EMNLP2016中文情绪原因发现数据集上的实验结果显示,CPC-ANN模型取得了比其他基线模型更好的效果。

Abstract

Emotion cause detection is an important research task in the field of sentiment analysis, with the purpose to find emotional cause of the individual emotion and its change in texts. To better capture the semantic information, the context information, and the relative position information of clauses in the text, this paper proposes a Context and Position Interactive Co-attention Neural Network (CPC-ANN) to detection emotion causes. CPC-ANN learn the semantic information of different text clauses through the multi-head self-attention mechanism of Transformer. At the same time, CPC-ANN embeds the relative position information into each word of clauses to provide clues for the detection of emotional causes. The experimental results on the EMNLP2016 Chinese emotion cause detection dataset show that CPC-ANN model achieves better results than the other baseline models.

关键词

情绪原因识别 / 协同注意力 / 神经网络 / 上下文 / 位置

Key words

emotion cause detection / co-attention / neural network / context / position

引用本文

导出引用
徐秀,刘德喜. 基于上下文和位置交互协同注意力的文本情绪原因识别. 中文信息学报. 2022, 36(2): 142-151
XU Xiu, LIU Dexi. Context and Position Interactive Co-Attention Neural Network for Text Emotion Cause Detection. Journal of Chinese Information Processing. 2022, 36(2): 142-151

参考文献

[1] Lee S Y M, Chen Y, LI S, et al. Emotion cause events: corpus construction and analysis[C]//Proceedings of the 7th International Conference on Language Resources and Evaluation, 2010: 1121-1128.
[2] Lee S Y M, Chen Y, Huang C R. A text-driven rule-based system for emotion cause detection[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 2010: 45-53.
[3] Li W, Xu H. Text-based emotion classification using emotion cause extraction[J]. Expert Systems with Applications, 2014, 41(4): 1742-1749.
[4] Gao K, Xu H, Wang J. A rule-based approach to emotion cause detection for Chinese microblogs[J]. Expert Systems with Applications, 2015, 42(9): 4517-4528.
[5] Russo I, Caselli T,Rubino F, et al. EMO Cause: An easy-adaptable approach to emotion cause contexts[C]//Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Association for Computational Linguistics, 2011: 153-160.
[6] Xu B, Lin H, Lin Y, et al. Extracting emotion causes using learning to rank methods from an information retrieval perspective[J]. IEEE Access, 2019,7: 15573-15583.
[7] Chen Y, Lee S Y M, LI S, et al. Emotion cause detection with linguistic constructions[C]//Proceedings of the 23rd International Conference on Computational Linguistics, 2010: 179-187.
[8] Gui L, Wu D, Xu R, et al. Event-driven emotion cause extraction with corpus construction[C]//Proceedings of the Conference on Empirical Methods on Natural Language Processing, 2016: 1639-1649.
[9] 李逸薇, 李寿山, 黄居仁,等. 基于序列标注模型的情绪原因识别方法[J]. 中文信息学报, 2013, 27(5): 93-99.
[10] Ghazi D,Inkpen D, Szpakowicz S. Detecting emotion stimuli in emotion-bearing sentences[C]//Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics. Springer International Publishing, 2015: 152-165.
[11] 慕永利, 李旸, 王素格. 基于 E-CNN 的情绪原因识别方法[J]. 中文信息学报, 2018, 32(02): 120-128.
[12] Gui L, Hu J, He Y, et al. A question answering approach for emotion cause extraction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 1593-1602.
[13] Li X, Song K, Feng S, et al. A coattention neural network model for emotion cause analysis with emotional context awareness[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 4752-4757.
[14] Li X, Feng S, Wang D, et al. Context aware emotion cause analysis with multi-attention-based neural network[J]. Knowledge Based Systems, 2019, 174: 205-218.
[15] Ding Z, He H, Zhang M, et al. From independent prediction to re-ordered prediction: Integrating relative position and global label information to emotion cause identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(01): 6343-6350.
[16] Xia R, Zhang M, Ding Z. RTHN: A RNN-transformer hierarchical network for emotion cause extraction[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5285-5291.
[17] 巫继鹏, 鲍建竹, 蓝恭强,等. 结合规则蒸馏的情感原因发现[J]. 清华大学学报, 2020,60(5):422-429.
[18] Yu X, Rong W, Zhang Z, et al. Multiple level hierarchical network based clause selection for emotion cause extraction[J]. IEEE Access, 2019,7: 9071-9079.
[19] Fan C, Yan H, et al. A knowledge regularized hierarchical approach for emotion cause analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 5614-5624.
[20] Liang L, Ji X, Ren F. Attention-based Bi-LSTM-CRF network for emotion cause extraction in texts[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation, 2020: 2152-7431.
[21] Diao Y F, Lin H F, Yang L, et al. Multi-granularity bidirectional attention stream machine comprehension method for emotion cause extraction[J]. Neural Computing and Applications, 2020, 32(12): 8401-8413.
[22] Diao Y F, Lin H F, Yang L, et al. Emotion cause detection with enhanced-representation attention convolutional-context network[J].Soft Computing, 2021, 25(2): 1297-1307.
[23] Hu G M, Lu G, Zhao Y. FSS-GCN: A graph convolutional networks with fusion of semantic and structure for emotion cause analysis[J]. Knowledge-based Systems, 2021, 212(1): 106584.
[24] Xia R, Ding Z. Emotion cause pair extraction: A new task to emotion analysis in texts[C]//Proceedings of the Conference of the Association for Computational Linguistics, 2019: 1003-1012.
[25] Ding Z, Xia R. ECPE-2D: emotion-cause pair extraction based on joint two-dimensional representation[C]//Proceedings of the Conference of the Association for Computational Linguistics, 2020: 3161-3170.
[26] Ding J, Kejriwal M. An experimental study of the effects of position bias on emotion cause extraction[J/OL]. arXiv:2007.15066, 2020.

基金

国家自然科学基金(61762042,61972184,62076112);江西省主要学科学术和技术带头人培养计划项目(2021BCJL22041);江西省自然科学基金(20212ACB202002)
PDF(1142 KB)

Accesses

Citation

Detail

段落导航
相关文章

/