Senti-PG-MMR: 多文档游记情感摘要生成方法

梁梦英,李德玉,王素格,廖健,郑建兴,陈千

PDF(2510 KB)
PDF(2510 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (3) : 128-135.
情感分析与社会计算

Senti-PG-MMR: 多文档游记情感摘要生成方法

  • 梁梦英1,李德玉1,2,王素格1,2,廖健1,郑建兴1,陈千1
作者信息 +

Senti-PG-MMR: Research on Generation Method of Sentimental Summary of Multi-document Travel Notes

  • LIANG Mengying1, LI Deyu1,2, WANG Suge1,2, LIAO Jian1, ZHENG Jianxing1, CHEN Qian1
Author information +
History +

摘要

由于大量的游客在社交媒体上记录自己的心情,人们在享受便捷获取网络上大量旅游信息的同时,也淹没在混乱的游记信息海洋里。为了从游记中获取游客关心的景点信息和游客对景点表达的情感信息,该文提出了一个多文档游记的情感摘要生成方法,该方法结合指针生成网络和最大边界相关算法,构建了一个端到端的神经网络摘要生成模型。该模型在进行文本摘要生成时,对于情感信息给予重视,使得生成的摘要包含一定的情感信息。通过在自建数据集上进行训练和测试,实验结果验证了该模型的有效性。

Abstract

A large number of tourists record their mood on social media, with abundant tourists' emotional information about the scenic spot in their travel notes. To provide better scenic spot information, this paper proposes a emotional summary method for multiple scenic spot travel notes. It combines the pointer generation network and the maximum boundary correlation algorithm to build an end-to-end neural network summary generation model. The proposed model attaches importance to the emotional information while abstracting the text. The experimental results show that the proposed model is effective on a self-built data set.

关键词

旅游 / 文本摘要生成 / 情感信息

Key words

tourism / text summarization generation / emotional information

引用本文

导出引用
梁梦英,李德玉,王素格,廖健,郑建兴,陈千. Senti-PG-MMR: 多文档游记情感摘要生成方法. 中文信息学报. 2022, 36(3): 128-135
LIANG Mengying, LI Deyu, WANG Suge, LIAO Jian, ZHENG Jianxing, CHEN Qian. Senti-PG-MMR: Research on Generation Method of Sentimental Summary of Multi-document Travel Notes. Journal of Chinese Information Processing. 2022, 36(3): 128-135

参考文献

[1] Hu M, Liu B. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004: 168-177.
[2] 田珂珂, 周瑞莹, 董浩业,等. 基于编码器共享和门控网络的生成式文本摘要方法[J]. 北京大学学报(自然科学版), 2020(1): 61-67.
[3] Lebanoff L, Song K, Liu F. Adapting the neural encoder-decoder framework from single to multi-document summarization[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 4131-4141.
[4] Rush A M, Chopra S, Weston J. A neural attention model for abstractive sentence summarization[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing, 2015: 379-389.
[5] Nallapati R, Zhou B W, Santos CN D,et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016: 280-290
[6] Paulus R, Xiong C M, Socher R. A deep reinforced model for abstractive summarization[J]. arXiv preprint, arXiv: 1705.04304, 2017.
[7] Ma S M, Sun X, Xu J J. Improving semantic relevance for sequence-to-sequence learning of Chinese social media text summarization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 635-640
[8] Tan J W, Wan X J, Xiao J G. Abstractive document summarization with a graph-based attentional neural model[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1171-1181.
[9] 秦兵, 刘挺, 李生.多文档自动文摘综述[J]. 中文信息学报, 2005, 19(6): 15-22, 58.
[10] Chu E, Liu P. MeanSum: a neural model for unsupervised multi-document abstractive summarization[C]//Proceedings of the International Conference on Machine Learning, 2019: 1223-1232.
[11] 唐晓波, 顾娜, 谭明亮. 基于句子主题发现的中文多文档自动摘要研究[J].情报科学,2020, (3): 1007-1019
[12] 张冬梅. 文本情感分类及观点摘要关键问题研究[D]. 济南: 山东大学博士学位论文, 2012.
[13] 林莉媛, 王中卿, 李寿山,等. 基于PageRank的中文多文档文本情感摘要[J]. 中文信息学报, 2014, (2): 89-94.
[14] 张仰森, 郑佳, 黄改娟, 等. 基于双重注意力模 型的微博情感分析方法[J]. 清华大学学报(自然科学版), 2018(2): 61-67.
[15] Giannakopoulos G, Conroy J, Kubina J, et al. Multiling 2017 overview[C]//Proceedings of the MultiLing Workshop on Summarization and Summary Evaluation Across Source Types and Genres, 2017: 1-6.
[16] Carbonell J, Goldstein J. The use of MMR, diversity-based reranking for reordering documents and producing summaries[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1998: 335-336.
[17] Lin C Y. ROUGE: a package for automatic evaluation of summaries[C]//Proceedings of Workshop on Text Summarization Branches Out, Post-Conference Workshop of ACL, 2004: 74-81.
[18] Louviere J, Flynn T N, Marley A J. Best-worst scaling: theory, methods and applications[M]. Cambridge University Press, 2015.
[19] Kiritchenko S, Mohammad S. Best-worst scaling more reliable than rating scales: a case study on sentiment intensity annotation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 465-470.
[20] Ding Y, Yan E, Frazho A. PageRank for ranking authors in co-citation networks[J]. Journal of the American Society for Information &Technology, 2014, 60(11): 2229-2243.
[21] Dragomir R Radev, Kathleen R McKeown. Generating natural language summaries from multiple on-line sources[J]. Computation Linguistics, 1998: 24(3): 469-500.
[22] See A, Liu P J, Manning C D. Get to the point: summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1073-1083.
[23] Antognini D, Faltings B. Learning to create sentence semantic relation graphs for multi-document summarization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 319-329.

基金

国家自然科学基金(62076158,62072294,61906112);山西省重点研发计划项目(201803D421024);山西省应用基础研究计划项目(201901D211174); 山西省高等学校科技创新项目(2019L0008, 2020L0001)
PDF(2510 KB)

1320

Accesses

0

Citation

Detail

段落导航
相关文章

/