随着城市大脑建设进程的推进,城市中积累了大量的物联网(IoT)设备和数据,利用海量设备数据对问题进行分析和溯源,对于城市大脑建设具有重要意义。该文基于资源描述框架和智能物联网协议概念,提出一种以城市物联网本体为基础的城市大脑知识图谱建设方法,城市大脑知识图谱模型融合多源异构数据,覆盖城市基本要素,实现对城市要素的全面感知和深度认知。该文重点探究了城市事件本体中的事件抽取,设计了一种新颖的语言模型框架对事件类型和论元联合抽取,与单模型分析对比,该联合模型较单模型的事件类型和论元F1值分别提高0.4%和2.7%,在时间和模型复杂度上,较单模型级联也有更好效果。最后,该研究对知识图谱技术与人工智能、多传感器融合、GIS等新一代信息技术交叉融合方面进行了探究分析,为城市治理和服务应用场景提供理论依据。
Abstract
We propose a methodology for constructing a city brain knowledge graph (CBKG) based on the resource description framework, IoT protocol and digital twin. Knowledge ontology and sub-ontology models for city brain are designed by coupling city elements and smart IoT standards. This knowledge graph model can integrate multi-source heterogeneous data, and therefore serving in the brain knowledge system for city-level intelligent operating system. We explore the event extraction under the city event ontology and designe a novel joint model to extract the event meta-theory. The results suggest that CBKG can support the intelligent management of the city in decision-makings. Future application of CBKG will couple with artificial intelligence, multi-sensor technologies, geographic information systems, and etc.
关键词
城市大脑 /
知识图谱 /
物联网 /
本体构建 /
事件抽取
{{custom_keyword}} /
Key words
city brain /
knowledge graph /
Internet of things /
ontology construction /
event extraction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 城市大脑全球标准研究组.城市大脑全球标准研究报告[S]. 2020.http://www.wwns-r.org/.
[2] Liquor L, Peraldi-Frati M-A,Cimmino A, et al.SmartM2M; Study for oneM2M;Discovery and Query use cases and requirements,103714[R].ETSL2020.
[3] Jeong, S H, Shen J H, Ahn B. A study on smart healthcare monitoring using IoT based on blockchain[J]. Wireless Communications and Mobile Computing,2021,2021(2): 1-9.
[4] 国务院.国务院关于印发新一代人工智能发展规划的通知: 国发〔2017〕35号[A/OL]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. [2021-08-13].
[5] Miller,Eeric,J.An introduction to the resource description framework[J].Bulletin of the American Society for Information Science and Technodlogy,2005,25(1): 15-19.
[6] Zang G L, Wang Y Q, Wu Q R, et al.Model and construction method of the ontology of knowledge graph of smart city[J]. Big Data Research, 2020, 6(2): 96-106.
[7] Liu Z Y, Sun M S, Li Y K,et al. Knowledge representation learning: a review[J].Journal of computer research and development,2016,53(2): 247-261.
[8] oneM2M.Base_Ontology. TS-0012-V3.7.3[S],2019.
[9] Lehmann J, Robert I, Max J,et al.DBpedia: a large-scale multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2): 167-195.
[10] Sucnanek F. M., Kasneci G,Weikum G.Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, 2007: 697-706.
[11] Carlson A,Betteridge J,Wang R C,et al.Coupled semi-supervised learning for information extraction[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining,2010: 101-110.
[12] Dong X,Gabrilovich E,Heitz G, et al.Knowledgevault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the ACM, 2014.
[13] Xie C,Yu B B,Zeng Z Y,et al.Multi layer internet of things middleware based on knowledge graph[J].IEEE Internet of Things Journal,2020,8(4): 2635-2648.
[14] Sahlmann K,Scheffler T,Schnor B.Ontology-driven device descriptions for IoT network management[C]//Proceedings of the Global Internet of Things Summit,2018.
[15] 肖仰华. 知识图谱: 概念与技术[M]. 北京: 电子工业出版社,2020.
[16] 赵妍妍,秦兵,车万翔,等. 中文事件抽取技术研究[J]. 中文信息学报,2008, 22(1): 3-8.
[17] Chen Y, Xu L H, Liu K, et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 167-176.
[18] Liu S L,Li Y,Zhang F,et al.Event detection without triggers[C]//Proceedings of NAACL,2019: 735-744.
[19] Liu Y H,Ott M,Goyal N,et al.RoBERTa: a robustly optimized BERT pretraining approach[J/OL]. arXiv preprint arXiv:1907.11692,2019.
[20] Cui Y M,Che W X,Liu T,et al.Revisiting pre-trained models for Chinese natural language processing[C]//Proceedings of the EMNLP,2020: 657-668.
[21] Panchendrarajan R,Amaresan A.Bidirectional LSTM-CRF for named entity recognition[C]//Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation,Hong Kong,2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}