CHIP2020评测任务1概述:中文医学文本命名实体识别

李雯昕,张坤丽,关同峰,张欢,朱田恬,常宝宝,陈清财

PDF(1133 KB)
PDF(1133 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (4) : 66-72.
信息抽取与文本挖掘

CHIP2020评测任务1概述:中文医学文本命名实体识别

  • 李雯昕1,4,张坤丽1,4,关同峰1,4,张欢2,4,朱田恬3,常宝宝2,4,陈清财3,4
作者信息 +

Overview of CHIP2020 Shared Task 1: Named Entity Recognition in Chinese Medical Text

  • LI Wenxin1,4, ZHANG Kunli1,4, GUAN Tongfeng1,4, ZHANG Huan2,4,
    ZHU Tiantian3, CHANG Baobao2,4, CHEN Qingcai3,4
Author information +
History +

摘要

第六届中国健康信息处理会议(China Conference on Health Information Processing,CHIP2020)组织了中文医疗信息处理方面的6个评测任务,其中任务1为中文医学文本命名实体识别任务,该任务的主要目标是自动识别医学文本中的医学命名实体。共有253支队伍报名参加评测,最终37支队伍提交了80组结果,该评测以微平均F1值作为最终评估标准,提交结果中最高值达68.35%。

Abstract

The 6th China Conference on Health Information Processing (CHIP2020) organized six evaluation tasks in Chinese medical information processing, among which task 1 was named entity recognition task of Chinese medical text. The main purpose of this task is to automatically identify medical named entities in medical texts. A total of 253 teams signed up for the evaluation, and 37 teams finally submitted 80 sets of results. The micro-average F1 is used as the final evaluation criteria, and the highest value of the submitted results reached 68.35%.

关键词

命名实体识别 / 医学文本 / 自然语言处理

Key words

named entity recognition / medical text / natural language processing

引用本文

导出引用
李雯昕,张坤丽,关同峰,张欢,朱田恬,常宝宝,陈清财. CHIP2020评测任务1概述:中文医学文本命名实体识别. 中文信息学报. 2022, 36(4): 66-72
LI Wenxin, ZHANG Kunli, GUAN Tongfeng, ZHANG Huan,
ZHU Tiantian, CHANG Baobao, CHEN Qingcai.
Overview of CHIP2020 Shared Task 1: Named Entity Recognition in Chinese Medical Text. Journal of Chinese Information Processing. 2022, 36(4): 66-72

参考文献

[1] Tang B, Wu Y, Jiang M, et al. A hybrid system for temporal information extraction from clinical text[J]. Journal of American Medical Informatics Association Jamia, 2013(5): 828-835.
[2] Olivier B. The unified medical language system (UMLS): integrating biomedical terminology[J]. Nucleic Acids Research, 2004: 267-70.
[3] Etzioni O, Cafarella M, Downey D, et al. Unsupervised named-entity extraction from the web: An experimental study[J]. Artificial intelligence, 2005, 165(1): 91-134.
[4] Hanisch D, Fundel K, Mevissen H T, et al. ProMiner: rule-based protein and gene entity recognition[J]. Bmc Bioinformatics, 2005, 6: S14.
[5] Wang X, Yang C, Guan R. A comparative study for bio-medical named entity recognition[J]. International Journal of Machine Learning and Cybernetics, 2015, 9: 1-10.
[6] Qiu J, Zhou Y, Wang Q, et al. Chinese clinical named entity recognition using residual dilated convolutional neural network with conditional random field[J]. IEEE Transactions on NanoBioscience, 2019: 306-315.
[7] Xue K, Zhou Y, Ma Z, et al. Fine-tuning BERT for joint entity and relation extraction in Chinese medical text[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, 2019: 892-897.
[8] Wang Y, Li Y, Tong H, et al. HIT: nested named entity recognition via head-tail pair and token interac-tion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 6027-6036.
[9] Zlem U, South B R, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text[J]. Journal of the American Medical Informatics Association Jamia, 2011(5): 552.
[10] Kim J D, Ohta T, Tsuruoka Y, et al. Introduction tothe Bio-Entity recognition task at JNLPBA[C]//Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and ITS Applications, Geneva,2004: 70-75.
[11] Krallinger M,Leitner F,Rabal O, et al. CHEMDNER: The drugs and chemical names extraction challenge[J]. Journal of Cheminformatics, 2015, 7(1): 1-11.
[12] 沈晓明,桂永浩.临床儿科学.第2版[M].北京: 人民卫生出版社,2013.
[13] 张欢,宗源,常宝宝,等.面向医学文本处理的医学实体标注规范[C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics,2020: 561-571.
[14] 张坤丽,赵旭,关同峰,等.面向医疗文本的实体及关系标注平台的构建及应用[J].中文信息学报, 2020,34(6): 117-125.
[15] Jacob D,Chang M,Kenton L,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-standing[C]//Proceedings of NAACL-HLT. 2019: 4171-4186.
[16] Delobelle P,WintersT,Berendt B,et al. RobBERT: a Dutch RoBERTa-based Language Model[J].arxiv preprint arXiv: 2001.06286,2020.
[17] WeiJ, Ren X, Li X, et al. NEZHA: Neural Contextualized Representation for Chinese Language Understand-ing[J].arXiv preprint arXiv: 1909.00204
[18] Clark K,Luong M T, Le Q V, et al. ELECTRA: Pre-training text encoders as discriminators rather than generators[J]. ELECTRA, 2016, 85: 90.
[19] Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 1724-1734
[20] Zhang Y, Yang J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1554-1564.
[21] Liu L, Shang J, Ren X, et al. Empower sequence labeling with task-aware neural language model[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[22] Song C H, Sehanobish A. Using Chinese glyphs for named entity recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(10): 13921-13922.
[23] Strubell E, Verga P, Belanger D, et al. Fast and accurate entity recognition with Iterated dilated convolutions[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 2670-2680.

基金

河南省医学科技攻关计划省部共建项目(SB201901021);郑州市协同创新重大专项科技攻关项目(20XTZX1120);河南省高等学校重点科研项目(20A520038)
PDF(1133 KB)

2011

Accesses

0

Citation

Detail

段落导航
相关文章

/