幽默识别是自然语言处理的新兴研究领域之一。对话的特殊结构使得在对话中的幽默识别相较于短文本幽默识别更具有挑战性。在对话中,除了当前话语以外,上下文语境信息对于幽默的识别也至关重要。因此,该文在已有研究的基础上结合对话的结构特征,提出基于BERT的强化语境与语义信息的对话幽默识别模型。模型首先使用BERT对发言人信息和话语信息进行编码,其次分别使用句级别的BiLSTM、CNN和Attention机制强化语境信息,使用词级别的BiLSTM和Attention机制强化语义信息。实验结果表明,该文方法能有效提升机器识别对话中幽默的能力。
Abstract
Humor recognition is one of the emerging research issues in natural language processing. The special structure of dialogue makes humor recognition in dialogue more challenging in that, in addition to the current utterance, contextual information is also crucial for humor recognition. This proposes a BERT-based model for humor recognition in dialogue with enhanced context and semantic information. The model uses BERT to encode the initial utterance and speaker information, then employs sentence-level BiLSTM, CNN and Attention mechanism to enhance contextual information, and character-level BiLSTM and Attention mechanism to enhance semantic information. The experimental result shows that the model proposed can effectively improve the performance of humor recognition in dialogue.
关键词
幽默识别 /
对话结构 /
BERT
{{custom_keyword}} /
Key words
humor recognition /
dialogue structure /
BERT
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林语堂.幽默人生[M].西安:陕西师范大学出版社,2002.
[2] Romero EJ,Cruthirds KW. The use of humour in the workplace[J]. The Academy of Management Perspectives,2006,20(2): 58-69.
[3] 林鸿飞,张冬瑜,杨亮,等.幽默计算及其应用研究[J].山东大学学报(理学版),2016,51(07): 1-10.
[4] Attardo S. Linguistic theories of humor[J]. Language, 1996, 72(72): 45-64.
[5] Cui Y, Che W, Liu T, et al. Revisiting pre-trained models for Chinese natural language processing[J].arXiv preprint arXiv: 2004.13922, 2020.
[6] Mihalcea R, Strapparava C. Making computers laugh: Investigations in automatic humor recognition[C]//Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2005: 531-538.
[7] Yang D,Lavie A, Dyer C, et al. Humor recognition and humor anchor extraction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 2367-2376.
[8] Chen P Y, Soo V W. Humor recognition using deep learning[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, 113-117.
[9] Baziotis C, Pelekis N, Doulkeridis C, et al. Datastories at semeval-2017 task 6: Siamese LSTM with attention for humorous text comparison[C]//Proceedings of the 11th International Workshop on Semantic Evaluation, 2017: 390-395.
[10] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv: 1706.03762, 2017.
[11] Fan X, Lin H, Yang L, et al. Phonetics and ambiguity comprehension gated attention network for humor recognition[J]. Complexity, 2020, 2020: 1-9.
[12] 杨勇,杨亮,邹艳波,等.基于语言学特征与层次注意力机制的幽默识别[J].计算机工程,2020,46(08): 64-71.
[13] Annamoradnejad I,Zoghi G,ColBERT: Using BERT sentence embedding for humor detection[J]. arXiv preprint arXiv: 2004.12765, 2020.
[14] Devlin J, Chang MW, Lee K,et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv: 1810.04805, 2018.
[15] Bertero, Dario, Pascale F. A Long short-term memory framework for predicting humor in dialogues[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 130-135.
[16] Majumder N, Poria S, Hazarika D, et al. Dialoguernn: An attentive rnn for emotion detection in conversations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 6818-6825.
[17] Morency L P, Baltruaitis T. Multimodal machine learning: integrating language, vision and speech[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts. 2017: 3-5.
[18] Yang Z,Lin A, Julia H, et al. Multimodal Indicators of humor in videos[C]//Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval, 2019: 538-543.
[19] Bertero D, Fung P, et al. Deep learning of audio and language features for humor prediction[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation,Amsterdam,Netherlands, 2016: 496-501.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61602044,61772081)
{{custom_fund}}