基于多颗粒度文本表征的中文命名实体识别方法

田雨,张桂平,蔡东风,陈华威,宋彦

PDF(2451 KB)
PDF(2451 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (4) : 90-99.
信息抽取与文本挖掘

基于多颗粒度文本表征的中文命名实体识别方法

  • 田雨1,张桂平1,蔡东风1,陈华威1,宋彦2
作者信息 +

Chinese Named Entity Recognition Based on Text Representation Multi-granularty

  • TIAN Yu1, ZHANG Guiping1, CAI Dongfeng1, CHEN Huawei1, SONG Yan2
Author information +
History +

摘要

中文命名实体识别常使用字符嵌入作为神经网络模型的输入,但是中文没有明确的词语边界,字符嵌入的方法会导致部分语义信息的丢失。针对此问题,该文提出了一种基于多颗粒度文本表征的中文命名实体识别模型。首先,在模型输入端结合了字词表征,然后借助N-gram编码器挖掘N-gram中潜在的成词信息,有效地联合了三种不同颗粒度的文本表征,丰富了序列的上下文表示。该文在Weibo、Resume和OntoNotes4数据集上进行了实验,实验结果的F1值分别达到了72.41%、96.52%、82.83%。与基准模型相比,该文提出的模型具有更好的性能。

Abstract

Chinese named entity recognition utilizes character embedding as the input of neural network models, which may give rise to the loss of certain semantic information since there is no clear word boundary in Chinese. To figure out the aforementioned issue, this paper proposes an entity recognition method based on multi-granular text representations. Firstly, the char and word representation are combined as the model input. Then the N-gram encoder is exploited to explore the potential word information in the N-gram which enriches the contextual representation of the sequence. The experimental results on the Weibo, Resume and OntoNotes4 dataset outperform the baseline and reach 72.41%, 96.52% and 82.83% respectively.

关键词

中文命名实体识别 / 多颗粒度文本表征 / N-gram

Key words

Chinese named entity recognition / multi-granular text representation / N-gram

引用本文

导出引用
田雨,张桂平,蔡东风,陈华威,宋彦. 基于多颗粒度文本表征的中文命名实体识别方法. 中文信息学报. 2022, 36(4): 90-99
TIAN Yu, ZHANG Guiping, CAI Dongfeng, CHEN Huawei, SONG Yan. Chinese Named Entity Recognition Based on Text Representation Multi-granularty. Journal of Chinese Information Processing. 2022, 36(4): 90-99

参考文献

[1] Chen G,Tian Y,Song Y,et al.Relation extraction with type-aware map memories of word dependencies[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,2021: 2501-2512.
[2] Tian Y,Chen G,Song Y,et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics,2021: 4458-4471
[3] Fragkou P. Applying named entity recognition and co-reference resolution for segmenting English texts[J]. Journal of the Progress in Artificial Intelligence,2017,6(4): 325-346.
[4] Pang L,Lan Y,Guo J,et al. HAS-QA: hierarchical answer spans model for open-domain question answering[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019: 6875-6882.
[5] Tian Y,Chen G,Qin H,et al.Federated Chinese word segmentation with global character associations[C]//Proceedings of Findings of the Association for Computational Linguistics,2021: 4306-4313.
[6] Tian Y,Song Y,Ao X,et al.Joint Chinese word segmentation and part-of-speech tagging via two-way attentions of auto-analyzed knowledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020: 8286-8296.
[7] Zhang Y,Yang J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018: 1554-1564.
[8] Li X,Yan H,Qiu X,et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020: 6836-6842.
[9] Sui D,Chen Y,Liu K,et al. Leverage lexical knowledge for chinese named entity recognition via collaborative graph network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2019: 3828-3838.
[10] Rau L F. Extracting company names from text[C]//Proceedings of the IEEE Conference on Artificial Intelligence Application,1991: 29-32.
[11] Liu L,Wang D. A review on named entity recognition[J]. Journal of the China Society for Scientific and Technical Information,2018,37(3): 327-340.
[12] Grishman R,Sundheim B. Message understanding conference-6: a brief history[C]//Proceedings of the International Conference on Computational Linguistics,1996: 466-471.
[13] Liu Z,Zhu C,Zhao T. Chinese named entity recognition with a sequence labeling approach: based on characters, or based on words?[C]//Proceedings of the International Conference on Intelligent Computing,2010: 634-640.
[14] Huang Z,Xu W,Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv: 1508.01991, 2015.
[15] Lample G,Ballesteros M,Subramanian S,et al. Neural architectures for named entity recognition[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2016: 260-270.
[16] Dong C,Zhang J,Zong C,et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//Proceedings of the Natural Language Processing and Chinese Computing,2016: 239-250.
[17] Zhang Y,Liu Q,Song L. Sentence-state LSTM for text representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018: 317-327.
[18] Liu W,Xu T,Xu Q,et al. An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2019: 2379-2389.
[19] Cao P,Chen Y,Liu K,et al. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2018: 182-192.
[20] Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,2017: 6000-6010.
[21] Diao S,Song Y,Zhang T. Keyphrase generation with cross-document attention[J]. arXiv preprint arXiv: 2004.09800, 2020.
[22] Diao S,Shen X,Shum K,et al.TILGAN: transformer-based implicit latent GAN for diverse and coherent text generation[C]//Proceedings of Findings of the Association for Computational Linguistics,2021: 4844-4858.
[23] Chen Z,Shen Y,Song Y,et al.Cross-modal memory networks for radiology report generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics,2021: 5904-5914.
[24] Devlin J,Chang M,Lee K,et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2019: 4171-4186.
[25] Diao S,Bai J,Song Y,et al. ZEN: Pre-training Chinese text encoder enhanced by N-gram representations[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2020: 4729-4740.
[26] Song Y, Zhang T, Wang Y, et al. ZEN 2.0: continue training and adaption for N-gram enhanced text encoders[J]. arXiv preprint arXiv:2105.01279, 2021.
[27] Yan H,Deng B,Li X. TENER: adapting transformer encoder for named entity recognition[J]. arXiv preprint arXiv: 1911.04474, 2019.
[28] Nie Y,Tian Y,Wan X,et al. Named entity recognition for social media texts with semantic augmentation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2020: 1383-1391.
[29] Li J,Sun A,Han J. A survey on deep learning for named entity recognition[J]. arXiv preprint arXiv: 1812.09449, 2018.
[30] Nie Y,Tian Y,Song Y,et al. Improving named entity recognition with attentive ensemble of syntactic information[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2020: 4231-4245.
[31] Mikolov T,Chen K,Corrado G,et al. Efficient estimation of word representations in vector space[C]//Proceedings of the International Conference on Learning Representations,2013.
[32] Tian Y,Song Y,Xia F,et al. Improving Chinese word segmentation with wordhood memory networks[C]//Proceedings of the 58th Annual Meeting of thethe Association for the Association for Computational Linguistics,2020: 8274-8285.
[33] Song Y,Shi S,Li J,et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2018: 175-180.
[34] Tian Y,Song Y,Xia F. Joint Chinese word segmentation and part-of-speech tagging via multi-channel attention of character N-grams[C]//Proceedings of the International Conference on Intelligent Computing,2020: 2073-2084.
[35] Song Y,Lee C,Xia F. Learning word representations with regularization from prior knowledge[C]//Proceedings of the Conference on Computational Natural Language Learning,2017: 143-152.
[36] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabillstic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, 2001: 282-289.
[37] Peng N,Dredze M. Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of the Conference on Computational Natural Language Learning,2017: 143-152.
[38] Weischedel R,Pradhan S,Ramshaw L,et al. Ontonotes release 4.0[DB/OL]. 2011-12-05. http://doi.org/10.3s111/gfjf-7r50.
[39] Zhu Y,Wang G. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2019: 3384-3393.
[40] Meng Y,Wu W,Wang F,et al. Glyce: glyph-vectors for Chinese character representations[C]//Proceedings of the Conference on Neural Information Processing Systems,2019: 2742-2753.

基金

国家自然科学基金(U1908216);辽宁省重点研发计划(2019JH2/10100020)
PDF(2451 KB)

Accesses

Citation

Detail

段落导航
相关文章

/