面向高考历史科目试题的自动答题系统

边宁,韩先培,何苯,孙乐

PDF(2616 KB)
PDF(2616 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (4) : 137-145.
专题: 面向类人智能的教育认知关键技术

面向高考历史科目试题的自动答题系统

  • 边宁1,2,韩先培2,何苯1,2,孙乐2
作者信息 +

Automatic Question Answering System for History Subject of National College Entrance Examination

  • BIAN Ning1,2, HAN Xianpei2, HE Ben1,2, SUN Le2
Author information +
History +

摘要

高考是综合评估人类知识和能力水平的标准化考试,与传统的自动问答任务相比其挑战性更高。该文面向我国高考试题历史部分,基于深度神经网络技术,构建了历史科目试题自动答题系统。在答题系统中融合知识的一个主要挑战是知识的上下文相关性: 对于一个问题,在知识库存储的大量知识中,只有少数知识与回答该问题相关。针对这一挑战,该文设计了一种结合知识检索与机器阅读理解的知识融合自动答题系统。该系统利用知识检索的相关排序能力和机器阅读理解模型的知识定位能力,有效地发现问题相关的知识,从而增强自动答题的效果。实验结果显示,该系统可有效地作答高考历史科目试题。

Abstract

The National College Entrance Examination is a standardized test that comprehensively evaluates the level of human knowledge and abilities, which serves as a more challenging question answering task. This paper designs an automatic question answering system for the history subject of National College Entrance Examination based on deep neural networks. One of the challenges for knowledge-enhanced question answering is the contextual sensitivity of knowledge: among the large amount of knowledge stored in the knowledge base, only a few pieces of knowledge are relevant to answering a certain question. In response to this challenge, this paper designs a knowledge-enhanced question answering system that combines knowledge retrieval and machine reading comprehension. Through the relevance ranking ability of the knowledge retrieval system and the knowledge positioning ability of the machine reading comprehension model, knowledge related to the question can be effectively discovered, thereby enhancing the performance of the question answering system. The experimental results show that the system can effectively answer questions in the history subject of National College Entrance Examination.

关键词

自动答题 / 机器阅读理解 / 知识检索

Key words

automatic question answering / machine reading comprehension / knowledge retrieval

引用本文

导出引用
边宁,韩先培,何苯,孙乐. 面向高考历史科目试题的自动答题系统. 中文信息学报. 2022, 36(4): 137-145
BIAN Ning, HAN Xianpei, HE Ben, SUN Le. Automatic Question Answering System for History Subject of National College Entrance Examination. Journal of Chinese Information Processing. 2022, 36(4): 137-145

参考文献

[1] Ferrucci A, Brown W, Chu-Carroll J, et al. Building Watson: an overview of the DeepQA project[J]. Ai Magazine, 2010, 31(3): 59-79.
[2] Cheng G, Zhu W, Wang Z, et al. Taking up thegaokao challenge: an information retrieval approach[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 2479-2485.
[3] Chen D, Fisch A, Weston J, et al.Reading Wikipedia to answer open-domain questions[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1870-1879.
[4] Lee K, Chang M W, Toutanova K. Latent retrieval for weakly supervised open domain question answering[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 6086-6096.
[5] Karpukhin V, Oguz B, Min S, et al. Dense passage retrieval for open-domain question answering[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 6769-6781.
[6] Rajpurkar P, Zhang J, Lopyrev K, et al. SQuAD: 100,000+ questions for machine comprehension of text[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 2383-2392.
[7] Chen D, Bolton J, Manning C D.A thorough examination of the CNN/daily mail reading comprehension task[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 2358-2367.
[8] Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1, 2019: 4171-4186.
[9] Vinyals O, Fortunato M, Jaitly N. Pointer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, 2015: 2692-2700.
[10] Zhang S, Zhao H, Wu Y, et al. DCMN+: Dual co-matching network for multi-choice reading comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(05): 9563-9570.
[11] Shibuki H, Sakamoto K, Kano Y, et al. Overview of the NTCIR-11 QA-Lab task[C]//Proceedings of the 11th NTCIR Conference, 2014: 518-529.
[12] Fujita A, Kameda A, Kawazoe A, et al. Overview oftodai robot project and evaluation framework of its NLP-based problem solving[J]. World History, 2014, 36(36): 148.
[13] Wang D, Boytsov L, Araki J, et al. CMU multiple-choice question answering system at NTCIR-11 QA-Lab[C]//Proceedings of the 11th NTCIR Conference, 2014: 542-549.
[14] Hosseini M J,Hajishirzi H, Etzioni O, et al. Learning to solve arithmetic word problems with verb categorization[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 523-533.
[15] 陈志刚,刘青文,林伟,等.一种面向初高中英语单选题的类人答题系统[J]. 中国科学技术大学学报,2016(3): 231-237.
[16] Wu J, Liu X, Zhang X, et al. Master clinical medical knowledge at certificated-doctor-level with deep learning model[J]. Nature communications, 2018, 9(1): 1-7.
[17] Zeng D, Liu K, Chen Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 1753-1762.
[18] Huang Z, Wu A, Shen Y, et al.When retriever-reader meets scenario-based multiple-choice questions[C]//Proceedings of the Association for Computational Linguistics: EMNLP, 2021: 985-994.

基金

国家重点研究与发展计划项目(2018YFB1005100)
PDF(2616 KB)

1370

Accesses

0

Citation

Detail

段落导航
相关文章

/