基于图注意力网络的信息级联外源因素建模研究

杨彩飘,鲍鹏,李轩涯

PDF(4243 KB)
PDF(4243 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (5) : 163-172.
情感分析与社会计算

基于图注意力网络的信息级联外源因素建模研究

  • 杨彩飘1,鲍鹏1,李轩涯2
作者信息 +

Modeling External Factors for Information Cascade Prediction via Graph Attention Network

  • YANG Caipiao1, BAO Peng1, LI Xuanya2
Author information +
History +

摘要

现有的信息级联预测方法忽略了外源因素对传播级联演化过程的影响以及个体在外源因素影响下的行为偏好,同时对底层的社交网络图结构信息的分析效果欠佳。为解决上述问题,该文提出基于图注意力网络的信息传播外源因素建模方法,利用图注意力机制提取社交图的结构信息,通过卷积神经网络对传播级联的时序信息进行分析,从而捕获外源因素的影响,利用循环神经网络对传播路径进行建模,最后在考虑到个体受外源因素的影响程度后进行级联预测。在Twitter、Douban和Memetracker三个真实数据集上的实验结果表明,相比于同类工作,该文提出的级联预测模型的性能较优。

Abstract

The current information cascade prediction methods ignore the evolution change of the diffusion cascade and the individual's behavior preferences under the influence of external factors, as well as the graph structure of the social network. To address these issues, this paper proposes a method of modeling external factors in information diffusion based on graph attention network. The model applies graph attention mechanism to extract the underlying structure information in the social graphs. The convolutional neural networks are adopted to analyze the temporal information in the diffusion cascade and capture the external influence. A recurrent neural network is employed to model the diffusion path. Finally, the model utilizes different individual responses to the same external factors to predict the next node in the cascade. Experimental results on three real-world datasets from Twitter, Douban, and Memetracker show that the proposed model outperforms the state-of-the-art methods.

关键词

信息传播 / 级联预测 / 图注意力网络 / 循环神经网络

Key words

information diffusion / cascade prediction / graph attention network / recurrent neural network

引用本文

导出引用
杨彩飘,鲍鹏,李轩涯. 基于图注意力网络的信息级联外源因素建模研究. 中文信息学报. 2022, 36(5): 163-172
YANG Caipiao, BAO Peng, LI Xuanya. Modeling External Factors for Information Cascade Prediction via Graph Attention Network. Journal of Chinese Information Processing. 2022, 36(5): 163-172

参考文献

[1] Girvan M, Newman M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
[2] Kempe D, Kleinberg J,Tardos . Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003: 137-146.
[3] Li C, Ma J, Guo X, et al.Deepcas: An end-to-end predictor of information cascades[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 577-586.
[4] Bao P, Shen H W, Huang J, et al. Popularity prediction in microblogging network: A case study onsina weibo[C]//Proceedings of the 22nd International Conference on World Wide Web, 2013:177-178.
[5] Bao P, Zhang X. Uncovering and predicting the dynamic process of collective attention with survival theory[J]. Scientific Reports, 2017, 7(1): 1-8.
[6] Islam M R,Muthiah S, Adhikari B, et al. Deepdiffuse: predicting the 'Who' and 'When' in cascades[C]//Proceedings of the IEEE International Conference on Data Mining, 2018:1055-1060.
[7] Rodriguez M G, Balduzzi D, Schlkopf B. Uncovering the temporal dynamics of diffusion networks[C]//Proceedings of the 28th International Conference on Machine Learning, 2011:561-568.
[8] Yang Y, Tang J, Leung C W, et al. RAIN: social role-aware information diffusion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015:367-373.
[9] Tsur O, Rappoport A. What's in a hashtag? content based prediction of the spread of ideas in microblogging communities[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining, 2012: 643-652.
[10] Goyal A,Bonchi F, Lakshmanan L V S. Learning influence probabilities in social networks[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, 2010: 241-250.
[11] Wang J, Zheng V W, Liu Z, et al. Topological recurrent neural network for diffusion prediction[C]// Proceedings of the 17th IEEE International Conference on Data Mining, 2017:475-484.
[12] Wang Z, Chen C, Li W. A sequential neural information diffusion model with structure attention[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 1795-1798.
[13] Yang C, Tang J, Sun M, et al. Multi-scale information diffusion prediction with reinforced recurrent networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4033-4039.
[14] Matsubara Y, Sakurai Y, Prakash B A, et al. Rise and fall patterns of information diffusion: model and implications[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012: 6-14.
[15] Du N, Dai H, Trivedi R, et al. Recurrent marked temporal point processes: Embedding event history to vector[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1555-1564.
[16] Wang Y, Shen H, Liu S, et al. Cascade dynamics modeling with attention-based recurrent neural network[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017:2985-2991.
[17] Zhuo W, Zhao Y, Zhan Q, et al. DiffusionGAN: network embedding for information diffusion prediction with generative adversarial nets[C]//Proceedings of the IEEE International Conference on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, 2019:808-816.
[18] Wang Z, Li W. Hierarchical diffusion attention network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 3828-3834.
[19] Velic^kovic′ P, Cucurull G, Casanova A, et al. Graph attention networks[J/OL]. arXiv preprint arXiv:1710.10903, 2017.
[20] Liao D, Xu J, Li G, et al. Popularity prediction on online articles with deep fusion of temporal process and content features[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 200-207.
[21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, 2017:5999-6009.
[22] Hodas N O, Lerman K. The simple rules of social contagion[J]. Scientific Reports, 2014, 4(1): 1-7.
[23] Zhong E, Fan W, Wang J, et al.Comsoc: adaptive transfer of user behaviors over composite social network[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012: 696-704.
[24] Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 497-506.

基金

国家自然科学基金(61702031);中国人工智能学会-华为MindSpore学术奖励基金;百度基金资助项目
PDF(4243 KB)

Accesses

Citation

Detail

段落导航
相关文章

/