将预先定义的双语对融入神经机器翻译(NMT)中一直是一项有较大应用场景,但具有挑战性的任务。受限于NMT的非离散特性以及逐词解码策略,想要在NMT中显式地融入外部双语对往往需要在解码期间修改集束搜索算法,或者对模型进行复杂修改。该文提出并探索了一种简单的将预先指定双语对融入NMT的方法,包括: (1)对训练数据进行适当的预处理,以添加有关预定义的双语信息;(2)使用部分共享的词向量以及额外向量增强信号,帮助模型区分预先指定的双语对和其他翻译文本。在多个语种上的实验和分析表明,该方法可以极大提高预定义短语被成功翻译的概率,达到接近99%(中英的基准是73.8%)的效果。
Abstract
Integrating pre-defined bilingual pairs into Neural Machine Translation (NMT) has always been a challenging task with substantial application scenarios. Limited by the word-by-word decoding strategy, the explicit integration of external bilingual pairs into NMT often requires modifying the beam search decoding algorithm or even the model itself. This paper proposes a simple method of incorporating pre-defined bilingual pairs into NMT: (1)preprocessing the training data to add information about pre-defined bilingual pairs; (2) using partially shared embeddings help the model distinguish between pre-defined bilingual pairs and other texts. Experiments and analysis in multiple language pairs show that the method can improve the probability of successful translation of pre-defined bilingual pairs, reaching nearly 99% (the Chinese-English benchmark is 73.8%).
关键词
神经机器翻译 /
预定义双语对
{{custom_keyword}} /
Key words
neural machine translation /
pre-defined bilingual pairs
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015.
[2] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 3104-3112.
[3] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5998-6008.
[4] Stahlberg F, Hasler E, Waite A, et al. Syntactically guided neural machine translation[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 299-305.
[5] Tang Y, Meng F, Lu Z, et al. Neural machine translation with external phrase memory[J]. arXiv preprint arXiv:1606.01792, 2016.
[6] Wang X, Tu Z, Xiong D, et al. Translating phrases in neural machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 1421-1431.
[7] Zhang J, Liu Y, Luan H, et al. Prior knowledge integration for neural machine translation using posterior regularization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1514-1523.
[8] Hokamp C, Liu Q. Lexically constrained decoding for sequence generation using grid beam search[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1535-1546.
[9] Chatterjee R, Negri M, Turchi M, et al. Guiding neural machine translation decoding with external knowledge[C]//Proceedings of the 2nd Conference on Machine Translation, 2017: 157-168.
[10] Crego J, Kim J, Klein G, et al. Systran′s pure neural machine translation systems[J]. arXiv preprint arXiv:1610.05540, 2016.
[11] Song K, Zhang Y, Yu H, et al. Code-switching for enhancing NMT with prespecified translation[C]//Proceedings of the NAACL-HLT (1), 2019:449-459.
[12] Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[13] Che W, Li Z, Liu T. LTP: A Chinese language technology platform[C]//Proceedings of the 27th International Conference on Computational Linguistics: Demonstrations, 2010: 13-16.
[14] Koehn P, Hoang H, Birch A, et al. Moses: open source toolkit for statistical machine translation[C]//Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. Association for Computational Linguistics, 2007: 177-180.
[15] Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1715-1725.
[16] Lample G, Ott M, Conneau A, et al. Phrase-based & neural unsupervised machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 5039-5049.
[17] Artetxe M, Labaka G, Agirre E, et al. Unsupervised neural machine translation[C]//Proceedings of the International Conference on Learning Representations, 2018: 1-12.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}