在这个网络媒体平台成为获取新闻资讯的主流方式的时代,新闻推荐扮演着至关重要的角色。一方面,媒体平台使用新闻推荐可帮助用户过滤掉不感兴趣的新闻,定制个性化阅读内容推送;另一方面,智能推送服务能够增加新闻点击率,帮助媒体平台实现新闻的快速传播。目前,新闻推荐逐渐成为数据分发领域核心技术之一,逐渐引起国内外学者的关注。该文针对新闻热度不均衡问题造成的长尾现象,提出了一种基于多维度兴趣注意力的用户长短期偏好的新闻推荐模型。首先,对用户长期偏好进行挖掘时把用户兴趣分成多个维度,并采用注意力机制控制不同兴趣维度的重要程度,从而学习到包含不同维度兴趣信息的长期偏好。其次,采用CNN与注意力网络相结合的模型对新闻进行表示学习,采用GRU在用户近段时间内的阅读历史中学习用户短期偏好。最后,通过大量在真实新闻数据集上的实验,以AUC、MRR、NDCG为评价指标与其他基线方法进行比较,证实了该模型均优于其他方法。
Abstract
At present, news recommendation has gradually become one of the core techniques and attracts many attention from various fields at home and abroad. Focusing on the unbalanced data issue, this paper proposes a news recommendation model with long and short-term user preference based on users’ multi-dimensional interest. We divide the user long-term interests into several dimensions, and utilize the attention mechanism to distinguish the importance of different dimensions. In addition, we combine CNN and attention network to learn the news representations, and uses GRU to capture users’ short-term preferences from their recent reading history.. Experiments on a real-life news datasets show that our proposed model outperforms the state-of-the-art news recommendation methods in terms of AUC, MRR and NDCG.
关键词
新闻推荐 /
注意力机制 /
长尾效应 /
神经网络 /
用户长短期偏好
{{custom_keyword}} /
Key words
news recommendation /
attention mechanism /
long tail /
neural network /
long and short-term user preferences
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DAS A S, DATAR M, GARG A, et al. Google news personalization: Scalable online collaborative filtering[C]//Proceedings of the 16th International Conference on World Wide Web, 2007: 271-280.
[2] LIU J, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//Proceedings of the 15th International Conference on Intelligent User Interfaces, 2010: 31-40.
[3] SANTOSH TYSS, SAHA A, GANULY N, et al. NPA: MVL: Multi-view learning for news recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1873-1876.
[4] ANDERSON C. The long tail: Why the future of business is selling less of more[M]. Hachette books, 2006.
[5] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[6] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-8.
[7] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 1724-1734.
[8] KOMPAN M, BIELIKOVA M. Content-based news recommendation[C]//Proceedings of International Conference on Electronic Commerce and Web Technologies, 2010: 61 -72.
[9] GARCIN F, ZHOU K, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]//Proceedings of IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012: 437-441.
[10] WANG H, Zhang F, XIE X, et al. DKN: Deep knowledge -aware network for news recommendation[C]//Proceedings of the World Wide Web Conference, 2018: 1835-1844.
[11] ZHENG G, ZHANG F, ZHENG Z, et al. DRN: A deep reinforcement learning framework for news recommendation[C]//Proceedings of the World Wide Web Conference, 2018: 167-176.
[12] ZHU Q, ZHOU X, SONG Z, et al. Dan: Deep attention neural network for news recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 5973-5980.
[13] WU C, WU F, AN M, et al. NPA: Neural news recommendation with personalized attention[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019: 2576-2584.
[14] WU C, WU F, AN M, et al. Neural news recommendation with attentive multi-view learning[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 3863-3869.
[15] GE S, WU C, WU F, et al. Graph enhanced representation learning for news recommendation[C]//Proceedings of the Web Conference, 2020:2863-2869.
[16] LIN C, XIE R, GUAN X, et al. Personalized news recommendation via implicit social experts[J]. Information Sciences, 2014, 254: 1-18.
[17] OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 1933-1942.
[18] AN M, WU F, WU C, et al. Neural news recommendation with long-and short-term user representations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 336 -345.
[19] SUN K, QIAN T, CHEN T, et al. Where to go next: modeling long-and short-term user preferences for point-of-interest recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 214- 221.
[20] TRAN T, YOU D, LEE K. Quaternion-based self-attentive long short-term user preference encoding for recommendation[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020: 1455-1464.
[21] GUO Y, CHENG Z, NIE L, et al. Attentive long short-term preference modeling for personalized product search[J]. ACM Transactions on Information Systems, 2019, 37(2): 1-27.
[22] HU L, LI C, SHI C, et al. Graph neural news recommendation with long-term and short-term interest modeling[J]. Information Processing and Management, 2020, 57 (2): 102142.
[23] LI C, LIU Z, WU M, et al. Multi-interest network with dynamic routing for recommendation at Tmall[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 2615 -2623.
[24] LV F, JIN T, YU C, et al. SDM: Sequential deep matching model for online large-scale recommender system[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 2635-2643.
[25] XU W, HE H, TAN M, et al. Deep interest with hierarchical attention network for click-through rate prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1905-1908.
[26] KUTUZOV A, FARES M, OEPEN S, et al. Word vectors, reuse, and replicability: Towards a community repository of large-text resources[C]//Proceedings of the 58th Conference on Simulation and Modelling, 2017: 271-276.
[27] GULLA J A, ZHANG L, LIU P, et al. The adressa dataset for news recommendation[C]//Proceedings of the International Conference on Web Intelligence, 2017: 1042-1048.
[28] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[29] KINGMA D P, BA J. Adam: A method for stochastic optimization [C]//Proceedings of 3rd International Conference on Learning Representations, 2015.
[30] GUO H, TANG R, YE Y, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 1725-1731.
[31] CHENG H T, KOC L, HARMSEN J, et al. Wide and deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, 2016: 7-10.
[32] YU Z, LIAN J, MAHMOODY A, et al. Adaptive user modeling with long and short-term preferences for personalized recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4213-4219.
[33] KOREN Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008: 426-434.
[34] TANG J, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, 2018: 565-573.
[35] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session based recommendations with recurrent neural networks [C]//Proceedings of 4th International Conference on Learning Representations, 2016: 1-10.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61602518,71872180);国家社会科学基金(21BXW076);高等学校学科创新引智基地(B21038);中南财经政法大学中央高校基本科研业务费专项(2722021BZ040)
{{custom_fund}}