基于阅读理解框架的中文事件论元抽取

陈敏,吴凡,李培峰,王中卿,朱巧明

PDF(3746 KB)
PDF(3746 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (10) : 107-115.
信息抽取与文本挖掘

基于阅读理解框架的中文事件论元抽取

  • 陈敏,吴凡,李培峰,王中卿,朱巧明
作者信息 +

Chinese Event Argument Extraction via Reading Comprehension Framework

  • CHEN Min, Wu Fan, LI Peifeng, WANG Zhongqing, ZHU Qiaoming
Author information +
History +

摘要

传统的事件论元抽取方法把任务当作句子中实体提及的多分类或序列标注任务,论元角色的类别在这些方法中只能作为向量表示,而忽略了论元角色的先验信息。实际上,论元角色的语义和论元本身有很大关系。对此,该文提议将其当作机器阅读理解任务,把论元角色转换为自然语言描述的问题,通过在上下文中回答这些问题来抽取论元。该方法更好地利用了论元角色类别的先验信息,在ACE2005中文语料上的实验证明了该方法的有效性。

Abstract

Event argument extraction methods is usually formulated as a multi-classification or sequence labeling task to identify the mention by entities in the sentence. The category of argument roles are represented by vectors without considering their prior information. In fact, the semantics of argument role category is closely related with the argument itself. Therefore, this paper proposes to regard argument extraction as machine reading comprehension, with argument role described as natural language question. and the way to extract arguments is to answer these questions based on the context. This method can make better use of the prior information existed in argument role categories and its effectiveness is shown in the experiments of Chinese corpus of ACE 2005.

关键词

事件论元抽取 / 阅读理解 / 先验信息 / BERT

Key words

event argument extraction / reading comprehension / prior information / BERT

引用本文

导出引用
陈敏,吴凡,李培峰,王中卿,朱巧明. 基于阅读理解框架的中文事件论元抽取. 中文信息学报. 2022, 36(10): 107-115
CHEN Min, Wu Fan, LI Peifeng, WANG Zhongqing, ZHU Qiaoming. Chinese Event Argument Extraction via Reading Comprehension Framework. Journal of Chinese Information Processing. 2022, 36(10): 107-115

参考文献

[1] Feng X, Qin B, Liu T. A language-independent neural network for event detection[J]. Science China Information Sciences, 2018, 61(9): 1-12.
[2] Lin H, Lu Y, Han X, et al. Nugget proposal networks for chinese event detection[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1565-1574.
[3] Ding N, Li Z, Liu Z, et al. Event detection with trigger-aware lattice neural network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 347-356.
[4] Xiang Y X, Tong Z, Wei Y, et al. A hybrid character representation for chinese event detection[C]//Proceedings of the International Joint Conference on Neural Networks. IEEE, 2019: 1-8.
[5] Zeng Y, Yang H, Feng Y, et al. A convolution BiLSTM neural network model for Chinese event extraction[M]. Natural Language Understanding and Intelligent Applications. Springer, Cham, 2016: 275-287.
[6] 贺瑞芳, 段绍杨. 基于多任务学习的中文事件抽取联合模型[J]. Journal of Software, 2019, 4: 1015-1030.
[7] Liao S, Grishman R. Using document level cross-event inference to improve event extraction[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 2010: 789-797.
[8] Hong Y, Zhang J, Ma B, et al. Using cross-entity inference to improve event extraction[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011: 1127-1136.
[9] Li Q, Ji H, Huang L. Joint event extraction via structured prediction with global features[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 73-82.
[10] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[11] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[J]. arXiv preprint arXiv:1310.4546, 2013.
[12] Chen Y, Xu L, Liu K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 167-176.
[13] Nguyen T H, Cho K, Grishman R. Joint event extraction via recurrent neural networks[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 300-309.
[14] Liu X, Luo Z, Huang H. Jointly multiple events extraction via attention-based graph information aggregation[J]. arXiv preprint arXiv:1809.09078, 2018.
[15] Wang X, Wang Z, Han X, et al. HMEAE: Hierarchical modular event argument extraction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 5781-5787.
[16] Huang L, Ji H, Cho K, et al. Zero-shot transfer learning for event extraction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 2160-2170.
[17] Chen Y, Liu S, Zhang X, et al. Automatically labeled data generation for large scale event extraction[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,2017: 409-419.
[18] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[19] Li P, Zhou G. Employing morphological structures and sememes for Chinese event extraction[C]//Proceedings of COLING, 2012: 1619-1634.
[20] Chen C, Ng V. Joint modeling for Chinese event extraction with rich linguistic features[C]//Proceedings of COLING, 2012: 529-544.
[21] Zhu S, Li P, Zhu Q. A Chinese event argument inference approach based on entity semantics and event relevance[C]//Proceedings of the Workshop on Chinese Lexical Semantics. Springer, Cham, 2015: 577-586.
[22] Mccann B, Keskar N S, Xiong C, et al. The natural language decathLon: multitask learning as question answering[J]. arXiv preprint arXiv:1806.08730, 2018.
[23] Gardner M, Berant J, Hajishirzi H, et al. Question answering is a format; when is it useful?[J]. arXiv preprint arXiv:1909.11291, 2019.
[24] Li X, Yin F, Sun Z, et al. Entity-relation extraction as multi-turn question answering[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 1340-1350.
[25] Li X, Feng J, Meng Y, et al. A unified mrc framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 5849-5859.
[26] Cui Y, Che W, Liu T, et al. Pre-training with whole word masking for Chinese BERT[J]. arXiv preprint arXiv:1906.08101, 2019.
[27] Wang X, Han X, Liu Z, et al. Adversarial training for weakly supervised event detection[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 998-1008.

基金

国家自然科学基金(61836007, 61772354,61806137);江苏高校优势学科建设工程资助项目
PDF(3746 KB)

Accesses

Citation

Detail

段落导航
相关文章

/