融合全局语义信息和结构特征的篇章功能语用识别方法

杜梦琦,蒋峰,褚晓敏,李培峰,孔芳

PDF(3904 KB)
PDF(3904 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (11) : 50-59.
语言分析与计算

融合全局语义信息和结构特征的篇章功能语用识别方法

  • 杜梦琦,蒋峰,褚晓敏,李培峰,孔芳
作者信息 +

Discourse Functional Pragmatics Recognition Based on Global Semantic Information and Structural Features

  • DU Mengqi, JIANG Feng, CHU Xiaomin, LI Peifeng, KONG Fang
Author information +
History +

摘要

篇章分析是自然语言处理领域研究的热点和重点。相较于基于形式语法篇章分析的快速发展,篇章作为一个整体的语义单位,其功能和语义却没有引起足够的重视。该文提出一种融合全局语义信息和结构特征信息模型(FPRGS)来识别篇章的功能语用。该模型在获取篇章单元交互信息的同时融合篇章单元所在文章的全局信息,并使用门控语义网络将篇章单元的结构信息与语义信息结合,从而在语义和结构两方面获得了更加丰富的篇章单元信息。在汉语宏观篇章树库上的实验结果证明,该文提出的模型能够有效地识别篇章单元的功能语用。

Abstract

Discourse analysis is a well-recognized topic in natural language processing. Rapid as the development of discourse analysis based on formal grammar, the function and semantics of discourse as a whole have not been well addressed. This paper proposes a Functional Pragmatics Recognition Model Based on Global and Structure Information (FPRGS). The FPRGS first obtains the interactive information of discourse units and integrates the global information of the article. Then it uses the gated semantic network to combine the structural information of discourse units with semantic information. The experimental results in the Chinese macro discourse tree-bank show that the proposed model can effectively identify the discourse units' functional pragmatics.

关键词

篇章分析 / 篇章功能语用 / 门控语义网络

Key words

discourse analysis / discourse functional pragmatics / gated semantic network

引用本文

导出引用
杜梦琦,蒋峰,褚晓敏,李培峰,孔芳. 融合全局语义信息和结构特征的篇章功能语用识别方法. 中文信息学报. 2022, 36(11): 50-59
DU Mengqi, JIANG Feng, CHU Xiaomin, LI Peifeng, KONG Fang. Discourse Functional Pragmatics Recognition Based on Global Semantic Information and Structural Features. Journal of Chinese Information Processing. 2022, 36(11): 50-59

参考文献

[1] VAN DIJK T A. News as discourse[M]. University of Groningen, 1988.
[2] CHU X, JIANG F, XU S, et al. Building amacro Chinese discourse treebank[C]//Proceedings of the 11th International Conference on Language Resources and Evaluation, 2018: 1920-1924.
[3] 褚晓敏. 宏观篇章结构表示体系、资源建设和计算模型研究[D]. 苏州:苏州大学博士学位论文, 2018.
[4] JIANG F, XU S, CHU X, et al. MCDTB: A macro-level Chinese discourse treebank[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3493-3504.
[5] 孙振华, 周懿, 朱巧明, 等. 基于篇章主题的中文宏观篇章主次关系识别方法[J]. 中文信息学报, 2020, 34(12): 30-38.
[6] 周懿, 褚晓敏, 朱巧明, 等. 基于宏观语义表示的宏观篇章关系识别方法[J]. 中文信息学报, 2019, 33(3): 1-7, 24.
[7] LIAKATA M, DOBNIK S, SAHA S, et al. A discourse-driven content model for summarising scientific articles evaluated in a complex question answering task[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2013: 747-757.
[8] COHAN A,GOHARIAN N. Scientific article summarization using citation-context and article's discourse structure[J]. arXiv preprint arXiv:1704.06619, 2017.
[9] MUKHERJEE S, BHATTACHARYYA P. Sentiment analysis in twitter with lightweight discourse analysis[C]//Proceedings of the COLING, 2012: 1847-1864.
[10] ZOU B, ZHOU G, ZHU Q. Negation focus identification with contextual discourse information[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 522-530.
[11] YARLOTT W V, CORNELIO C, GAO T, et al. Identifying the discourse function of news article paragraphs[C]//Proceedings of the Workshop Events and Stories in the News, 2018: 25-33.
[12] BANISAKHER D, YARLOTT W V, ALDAWSARI M, et al. Improving the identification of the discourse function of news article paragraphs[C]//Proceedings of the 1st Joint Workshop on Narrative Understanding, Storylines, and Events, 2020: 17-25.
[13] CHOUBEY P K, LEE A, HUANG R, et al. Discourse as a function of event: profiling discourse structure in news articles around the main event[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 5374-5386.
[14] JIANG F, LI P, ZHU Q. Joint modeling of recognizing macro Chinese discourse nuclearity and relation based on structure and topic gated semantic network[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 276-286.
[15] SUN Z, JIANG F, LI P, et al. Macro discourse relation recognition via discourse argument pair graph[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2020: 108-119.
[16] 蒋峰, 褚晓敏, 徐昇, 等. 基于主题相似度的宏观篇章主次关系识别方法[J]. 中文信息学报, 2018, 32(1): 43-50.
[17] PAN Z,KOSICKI G M. Framing analysis: An approach to news discourse[J]. Political Communication, 1993, 10(1): 55-75.
[18] LIDDY E D R. The discourse-level structure of empirical abstracts: An exploratory study[J]. Information Processing and Management, 1991, 27(1): 55-81.
[19] KIRCZ J G. Rhetorical structure of scientific articles: the case for argumentational analysis in information retrieval[J]. Journal of Documentation, 1991,47(4): 354-372.
[20] TEUFEL S, CARLETTA J,MOENS M. An annotation scheme for discourse-level argumentation in research articles[C]//Proceedings of the 9th Conference of the European Chapter of the Association for Computational Linguistics, 1999: 110-117.
[21] MIZUTA Y, KORHONEN A, MULLEN T, et al. Zone analysis in biology articles as a basis for information extraction[J]. International Journal of Medical Informatics, 2006, 75(6): 468-487.
[22] WILBUR W J,RZHETSKY A, SHATKAY H. New directions in biomedical text annotation: Definitions, guidelines and corpus construction[J]. BMC Bioinformatics, 2006, 7(1): 1-10.
[23] WAARD A, BUITELAAR P, EIGNER T. Identifying the epistemic value of discourse segments in biology texts (project abstract)[C]//Proceedings of the 8th International Conference on Computational Semantics, 2009: 351-354.
[24] LIAKATA M, SAHA S, DOBNIK S, et al. Automatic recognition of conceptualization zones in scientific articles and two life science applications[J]. Bioinformatics, 2012, 28(7): 991-1000.
[25] SONG W, SONG Z, FU R, et al. Discourse self-attention for discourse element identification in argumentative student essays[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 2820-2830.
[26] BURSTEIN J,MARCU D, KNIGHT K. Finding the WRITE stuff: Automatic identification of discourse structure in student essays[J]. IEEE Intelligent Systems, 2003, 18(1): 32-39.
[27] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association of Computational Lingaistics, 2019: 4171-4286.
[28] FAN Y, JIANG F, CHU X, et al. Combining global and local information to recognize chinese macro discourse structure[C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics, 2020: 183-194.
[29] ROCKTSCHEL T, GREFENSTETTE E, HERMANN K M, et al. Reasoning about entailment with neural attention[J]. arXiv preprint arXiv:1509.06664, 2015.
[30] JIANG F, LI P, CHU X, et al. Recognizing macro Chinese discourse structure on label degeneracy combination model[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2018: 92-104.
[31] FENG V W, HIRST G. Text-level discourse parsing with rich linguistic features[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 2012: 60-68.

基金

国家自然科学基金(61836007)
PDF(3904 KB)

1501

Accesses

0

Citation

Detail

段落导航
相关文章

/