杨进才,陈雪松,胡泉,蔡旭勋. 基于ERNIE-Gram和TinyBERT混合模型的复句关系体系转换[J]. 中文信息学报, 2022, 36(12): 16-26.
YANG Jincai, CHEN Xuesong, HU Quan, CAI Xuxun. Compound Sentence Relation Conversion Based on ERNIE-Gram and TinyBERT. , 2022, 36(12): 16-26.
Compound Sentence Relation Conversion Based on ERNIE-Gram and TinyBERT
YANG Jincai1, CHEN Xuesong1,2, HU Quan3, CAI Xuxun3
1.School of Computer, Central China Normal University, Wuhan, Hubei 430079, China; 2.Wuhan Hight School, Wuhan, Hubei 430061, China; 3.Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, Hubei 430079, China
Abstract:The compound sentence relation refers to the semantic relation between clauses. Among the current classification systems of compound sentence, the compound sentence trichotomy and HIT-CDTB are the most popular systems. Based on the pre-trained language models like ERNIE-Gram and TinyBERT, as well as PCA (principal component analysis), we proposed a three-stage model to recognize relation about compound sentence. Experiments reveal 77.60% accuracy of relation conversion from compound sentence trichotomy to HIT-CDTB, and 89.17% vice vesa.
[1] 邢福义. 汉语复句研究[M]. 北京: 商务印书馆,2001: 1-56. [2] 宗成庆. 中文信息处理研究现状分析[J]. 语言战略研究,2016,1(06): 19-26. [3] 徐赳赳, Webster J. 复句研究与修辞结构理论[J]. 外语教学与研究,1999(04): 16-22. [4] Prasad R,Dinesh N,Lee A,et al. The penn discourse TreeBank 2.0[C]//Proceedings of the 6th International Conference on Language Resources and Evaluation,2008: 2961-2968. [5] 张牧宇,宋原,秦兵,等. 中文篇章级句间语义关系识别[J]. 中文信息学报,2013,27(06): 51-57. [6] 宗成庆. 统计自然语言处理[M].北京: 清华大学出版社,2008: 8-13. [7] Han X,Zhang Z,Ding N,et al. Pre-trained models: Past,present and future[J]. AI Open,2021,2: 225-250. [8] 胡金柱,吴锋文,李琼. 汉语复句关系词库的建设及其利用[J]. 语言科学,2010,9(02): 133-142. [9] 杨进才,涂馨丹,沈显君,等. 基于依存关系规则的汉语复句关系词自动识别[J]. 计算机应用研究,2018,35(06): 1756-1760. [10] 周文翠,袁春风. 并列复句的自动识别初探[J]. 计算机应用研究,2008(03): 764-766. [11] Lin Z,Kan M Y,Ng H T. Recognizing implicit discourse relations in the Penn Discourse Treebank[C]//Proceedings of the EMNLP 2009,Singapore,2009. [12] 杨进才,陈忠忠,沈显君,等. 二句式非充盈态有标复句关系类别的自动标志[J]. 计算机应用研究,2017,34(10): 2950-2953. [13] 孙凯丽,邓沌华,李源,等. 基于句内注意力机制多路CNN的汉语复句关系识别方法[J]. 中文信息学报,2020,34(06): 9-17. [14] Mikolov T,Sutskever I,Chen K,et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the NIPS,2013: 3111-3119. [15] Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[C]//Proceedings of the NIPS,2017: 5998-6008. [16] Devlin J,Chang M W,Lee K,et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg,PA: Association for Computational Linguistics,2019: 4171-4186. [17] Brown T,Mann B,Ryder N,et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems,2020,33: 1877-1901. [18] Xiao D L,Li Y K,Zhang H,et al. ERNIE-Gram: Pre-training with explicitly n-gram masked language modeling for natural language understanding[C]//Proceedings of the NAACL-HLT,2021: 1702-1715. [19] Jiao X Q,Yin Y C,Shang L F,et al. TinyBERT: Distilling BERT for natural language understanding[C]//Proceedings of the EMNLP,2020: 4163-4174. [20] Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1933,24(7): 498-520. [21] Wei J,Zou K. EDA: Easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the EMNLP/IJCNLP(1),2019: 6381-8387.