罗艺雄,吕学强,游新冬. 融合多特征的专利功效短语识别[J]. 中文信息学报, 2022, 36(12): 139-148.
LUO Yixiong, LYU Xueqiang, YOU Xindong. Patent Efficacy Phrase Recognition Based on Multiple Features. , 2022, 36(12): 139-148.
融合多特征的专利功效短语识别
罗艺雄,吕学强,游新冬
北京信息科技大学 网络文化与数字传播重点实验室,北京 100101
Patent Efficacy Phrase Recognition Based on Multiple Features
LUO Yixiong, LYU Xueqiang, YOU Xindong
Beijing Key Laboratory of Internet Culture & Digital Dissemination Research, Beijing Information Science & Technology University, Beijing 100101, China
Abstract:Patent efficacy is one of the key information in the patent text. To identify the patent efficacy phrase, a multiple feature approach is proposed to combine both character-level features and word-level features. The character-level features include characters, character pinyin, and character wubi. The word-level features correspond to a collection of words containing those characters. Character-level features are vectorized by word2vec or BERT. Attention mechanism is used to fuse the word-level feature vectors in the input sequence. All feature vectors are concatenated as the input of BiLSTM (or Transformer)+CRF. Experiments on patents of new energy vehicles demonstrate the best 91.15% F1 value is achieved by BiLSTM+CRF with the combination of word2vec character vector, Bert character vector, wubi feature vector and word feature vector.
[1] 国家知识产权局.2020 年1~8月知识产权主要统计数据[EB/OL].https://www.cnipa.gov.cn/module/download/down.jsp?i_ID=152281 & colID=87[2020-09-04]. [2] 张兆锋,贺德方.专利技术功效图智能构建研究进展[J].情报理论与实践,2017,40(1): 139-144. [3] 陈颖,张晓林.专利中技术词和功效词识别方法研究[J].现代图书情报技术,2011(12): 24-30. [4] 张博培,杜永萍,马文建.基于隐马尔科夫模型的专利功效词识别[J].情报工程,2015,1(03): 81-89. [5] 胡菊香,吕学强,刘秀磊,等.专利技术功效短语获取研究[J].科学技术与工程,2016,16(14): 228-235. [6] Trappey A J C ,Trappey C V ,Govindarajan U H ,et al. Construction and validation of an ontology-based technology function matrix: technology mining of cyber physical system patent portfolios[J]. World Patent Information,2018,55(12): 19-24. [7] 马建红,杨成,姚爽.中文专利复合功效短语获取[J].计算机工程与设计,2019,40(02): 449-454. [8] 段庆锋,蒋保建.基于SAO结构的专利技术功效图构建研究[J].现代情报,2017,37(06): 48-54. [9] 翟东升,张京先,胡等金.基于SAO结构和词向量的专利技术功效图自动构建研究[J].情报理论与实践,2020,43(03): 116-123. [10] MA X,Hovy E . End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2016: 1064-1074. [11] 李丽双,郭元凯.基于CNN-BiLSTM-CRF模型的生物医学命名实体识别[J].中文信息学报,2018,32(01): 116-122. [12] 殷章志,李欣子,黄德根,等.融合字词模型的中文命名实体识别研究[J].中文信息学报,2019,33(11): 95-100. [13] 陈茹,卢先领.融合空洞卷积神经网络与层次注意力机制的中文命名实体识别[J].中文信息学报,2020,34(08): 70-77. [14] Devlin J,Chang M W,Lee K,et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT, 2019: 4171-4186. [15] Yue Zh,Jie Y. Chinese ner using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1554-1564. [16] Xiaonan L,Hang Y,Xipeng Q,et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6836-6842. [17] Ruotian M,Minlong P,QI Z H,et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 5951-5960. [18] Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5998-6008.