杨陟卓,黄河燕. 基于语言模型的有监督词义消歧模型优化研究[J]. 中文信息学报, 2014, 28(1): 19-25.
YANG Zhizhuo, HUANG Heyan. Supervised WSD Model Optimization Based on Language Model. , 2014, 28(1): 19-25.
Supervised WSD Model Optimization Based on Language Model
YANG Zhizhuo, HUANG Heyan
Beijing Engineering Applications Research Center on High Volume Language Information Processing and Cloud Computing, Beijing Institute on Technology, Beijing 100081, China; Department of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:Word Sense Disambiguation (WSD) is one of the key issues in natural language processing. Currently, supervised WSD method is an effective way to solve the problem. However, because of the lack of large-scale training data, supervised methods cannot achieve satisfactory results. This paper presents a word sense disambiguation optimization model based on statistical language model, which exploits language model to optimize traditional supervised WSD model. The new model derives the meaning of ambiguous words by taking advantage of the knowledge contained in training data and language model. The model can significantly improve WSD performance when the training data is insufficient. Experimental results show that the optimized model outperformed the best participating system in the SemEval-2007: task #5 evaluation.
[1] Chan Y S, Ng H T. Scaling up word sense disambiguation via parallel texts[C]//Proceedings of AAAI. 2005, 5: 1037-1042.
[2] Navigli R. Word Sense Disambiguation: A survey [J]. ACM Computing Surveys, 2009, 41(2): 1-69.
[3] 何径舟, 王厚峰. 基于特征选择和最大熵模型的汉语词义消歧.软件学报[J] ,2010, 21(6):1287-1295.
[4] Mart nez D, Agirre E, Mrquez L. Syntactic features for high precision word sense disambiguation[C]//Proceedings of the 19th International Conference on Computational Linguistics-Volume 1. Association for Computational Linguistics, 2002: 1-7.
[5] Che W, Liu T. Jointly modeling wsd and srl with markov logic[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010: 161-169.
[6] Dang H T, Palmer M. The role of semantic roles in disambiguating verb senses[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 42-49.
[7] 张仰森,黄改娟,苏文杰. 基于隐最大熵原理的汉语词义消歧方法.中文信息学报[J], 2012, 26(3):72-78.
[8] 卢志茂,刘挺,张刚,等.基于依存分析改进贝叶斯模型的词义消歧.高技术通讯[J], 2003, 13(5): 1-7.
[9] 范冬梅, 卢志茂, 张汝波,等. 基于信息增益改进贝叶斯模型的汉语词义消歧. 电子与信息学报[J], 2008,30(12): 2926-2929.
[10] 张仰森, 郭江. 基于隐最大熵原理的汉语词义消歧方法. 中文信息学报[J], 2012,26(1):3-8.
[11] Escudero G, Màrquez L, Rigau G. Naive Bayes and exemplar-based approaches to word sense disambiguation revisited[J]. arXiv preprint cs/0007011, 2000.
[12] Song F, Croft W B. A general language model for information retrieval[C]//Proceedings of the eighth international conference on information and knowledge management. ACM, 1999: 316-321.
[13] 刘鹏远, 赵铁军.利用语义词典Web挖掘语言模型的无指导译文消歧木. 软件学报[J], 2009, 20(5):1292-1300.
[14] Bergsma S, Lin D, Goebel R. Web-Scale N-gram Models for Lexical Disambiguation[C]//Proceedings of IJCAI. 2009, 9: 1507-1512.
[15] Jin P, Wu Y, Yu S. SemEval-2007 task 05: multilingual Chinese-English lexical sample[C]//Proceedings of the 4th International Workshop on Semantic Evaluations. Association for Computational Linguistics, 2007: 19-23.
[16] Dong Zhendong, Dong Qiang. Hownet[OL]. 1999.[2010-11-5], http://www.keenage.com
[17] Carpuat M, Wu D. Word sense disambiguation vs. statistical machine translation[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 387-394.