结合信任度与社会网络关系分析的微博推荐方法研究

李 慧,马小平, 施 珺, 仲兆满, 蔡 虹

PDF(1903 KB)
PDF(1903 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (2) : 146-153.
信息检索与问答系统

结合信任度与社会网络关系分析的微博推荐方法研究

  • 李 慧1,2,马小平2, 施 珺1, 仲兆满1, 蔡 虹1,3
作者信息 +

Microblog Recommendation by Trust and Social Relationship

  • LI Hui1,2, MA Xiaoping2, SHI Jun1, ZHONG Zhaoman1, CAI Hong1,3
Author information +
History +

摘要

随着微博网络的盛行,越来越多的微博信息困扰用户无法快速定位自己感兴趣的博文。为了解决微博信息过载问题,信息过滤、推荐和搜索等技术被应用于微博研究中。该文提出了一个综合信任模型、社会网络关系分析的综合推荐模型,应用LDA主题模型及矩阵分解技术推断微博的主题分布和用户的兴趣取向,实现微博的个性化推荐。通过实验验证,该方法能十分有效地解决个性化博文推荐问题。

Abstract

Due to the rapid growth of microblogs, bloggers are facing difficulties in locating the microblogs they are interested. To deal with this information overload, various approaches including messages filtering, recommendation and searching have been investigated. Focusing on recommending bloggers or microblog posts by the trust model and the social relationship, this paper applies LDA topic model and Matrix Factorization to infer the topic distribution of microblogs and the user interest. According to the experimental results, the proposed method can effectively solve the personalized recommendation of microblog.

关键词

信任度 / 社会网络 / 矩阵分解 / 微博 / LDA

Key words

trust / social networks / matrix factorization / blog / LDA

引用本文

导出引用
李 慧,马小平, 施 珺, 仲兆满, 蔡 虹. 结合信任度与社会网络关系分析的微博推荐方法研究. 中文信息学报. 2017, 31(2): 146-153
LI Hui, MA Xiaoping, SHI Jun, ZHONG Zhaoman, CAI Hong. Microblog Recommendation by Trust and Social Relationship. Journal of Chinese Information Processing. 2017, 31(2): 146-153

参考文献

[1] Busch M, Gade K, Larson B, et al. Earlybird: Real-Time Search at Twitter[J]. 2012, 41(4): 1360-1369.
[2] Chen C, Li F, Ooi B C, et al. TI: an efficient indexing mechanism for real-time search on tweets.[C]// Proceeding of ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June. 2011: 649-660.
[3] Gao M, Jin C, Qian W, et al. Real-Time Search over a Microblogging System[C]// Proceeding of International Conference on Cloud & Green Computing. 2012: 352-359.
[4] Liu K M, Chen W, Bu J J, et al. User Modeling for Recommendation in Blogspace[C]// Proceeding of Ieee/wic/acm International Conferences on Web Intelligence and Intelligent Agent Technology Workshops. IEEE, 2007: 79-82.
[5] Ray S K, Singh S. Blog content based recommendation framework using WordNet and multiple Ontologies[C]// Proceeding of International Conference on Next Generation Web Services Practices. 2010: 432-437.
[6] Liu D R, Tsai P Y, Chiu P H. Personalized recommendation of popular blog articles for mobile applications[J]. Information Sciences, 2011, 181(9): 1552-1572.
[7] 丁兆云,贾焰,周斌.微博数据挖掘研究综述[J].计算机研究与发展,2014, 51(4): 691-706.
[8] Deldjoo Y, Elahi M, Quadrana M, et al. Toward Effective Movie Recommendations Based on Mise-en-Scène Film Styles[C]// Proceedings of the Chitaly Bi Conference on Italian Sigchi Chapter. 2015: 162-165.
[9] Jonathan G, Thomas S, Maryam R, et al. Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies.[C]// Proceedings of the 7th Workshop on Zutelligent Techniques for Web Personalization & Recommeuder Systems (ITwp’09), California, USA, 2009.
[10] Shin D, Cetintas S, Lee K C, et al. Tumblr Blog Recommendation with Boosted Inductive Matrix Completion[C]// Proceeding of the 24th ACM International Conference on Informetion and Knowledge Managment (CIKM’15), 2015: 203-212.
[11] K. Fujimura, M. Sugisaki. TheeingenRumer algorithm for ranking blogs[C]//Proceeding of the WWW 2005 of the workshop on the weblogging. 2005: 331-342.
[12] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[13] J.M. Keinberg. Authoritative sources in hyperlinked environment[C]// Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms. 1999: 231-240.
[14] S.Brin, L.Page. The anatomy of a large-scale hypertextural web search engine[C]// Proceedings of seventh international World Wide Web conference,1998: 118-129.
[15] Ruslan Salakhutdinov, Andriy Mnih. Probabilistic Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2007: 1257-1264.
[16] Xia J B. Template matching algorithm based on gradient search[C]// Proceedings of International Conference on Mechatronics and Control. IEEE, 2014: 1472\1475.
[17] 夏培勇.个性化推荐技术中的协同过滤算法研究[D].中国海洋大学博士学位论文,2011.
[18] 慕福楠.面向微博用户的推荐多样性研究[D].哈尔滨工业大学硕士学位论文,2013.
[19] 蒋超.基于用户聚类和语义词典的微博推荐系统[D].浙江大学硕士学位论文,2013.
[20] He Y, Tan J. Study on SINA micro-blog personalized recommendation based on semantic network[J]. Expert Systems with Applications, 2015, 42(10): 4797-4804.

基金

国家自然科学基金(61403156,61403155);江苏省科技项目(BN2016065);江苏省海资院开放课题(JSIMR201403);连云港市科技计划项目(SH1507,CXY1530,CK1503,NYYQ1620);淮海工学院自然科学基金资助(Z2014007,Z2014012)
PDF(1903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/