一种融合个性化与多样性的人物标签推荐方法

颛 悦,熊锦华,程学旗

PDF(4016 KB)
PDF(4016 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (2) : 154-162.
信息检索与问答系统

一种融合个性化与多样性的人物标签推荐方法

  • 颛 悦1,2,熊锦华1,2,程学旗1,2
作者信息 +

User Tag Recommendation with Personalization and Diversity

  • ZHUAN Yue1,2, XIONG Jinhua1,2, CHENG Xueqi1,2
Author information +
History +

摘要

针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。

Abstract

To take full advantage of users social characteristics and address the diversity of tag recommendation, we present a method for user tag recommendation, aiming to combine users social characteristics and the diversity of tag recommendation. We use topic model to get a users potential semantic topics from his tweets, and then cluster the users followed by this user, i.e. using the potential semantic topics to divide the users into different areas. Each area can reflect the interest that attracts the user to follow. We select several representative tags by sorting the tags in the area based on TF-IDF. Then, we combine and sort different areas of representative tags to get top-K tags for recommendation. Experiment shows that our approach not only can recommend diversity tags but also reflect the users interest and hobbies.

关键词

人物标签推荐 / 多样性推荐 / 标签冗余 / 标签质量

Key words

user tag recommendation / recommendation diversity / tag redundancy / tag quality

引用本文

导出引用
颛 悦,熊锦华,程学旗. 一种融合个性化与多样性的人物标签推荐方法. 中文信息学报. 2017, 31(2): 154-162
ZHUAN Yue, XIONG Jinhua, CHENG Xueqi. User Tag Recommendation with Personalization and Diversity. Journal of Chinese Information Processing. 2017, 31(2): 154-162

参考文献

[1] 新华网. 第 32 次中国互联网络发展状况统计报告[R]. 网络数据库: 中国互联网络信息中心,2013年.
[2] N Zhang, Y Zhang, J Tang. A tag recommendation system based on contents[C]//Proceedings of the ECML PKDD Discovery Challenge 2009, 2009: 285.
[3] Harvey M, et al. Tripartite hidden topic models for personalised tag suggestion[C]//Proceedings of the Advances in Information Retrieval. 2010: 432-443.
[4] Zhang Y, et al. Combining content and relation analysis for recommendation in social tagging systems[C]//Proceedings of the Physica A: Statistical Mechanics and Its Applications. 2012, 391(22): 5759-5768.
[5] Heymann P, D Ramage, H Garcia-Molina. Social tag prediction[C]//Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval,2008.
[6] Jschke R, et al. Tag recommendations in folksonomies[C]//Proceedings of the Knowledge Discovery in Databases: PKDD 2007, 2007: 506-514.
[7] Liu Z, C Shi, M Sun. FolkDiffusion: A graph-based tag suggestion method for folksonomies[C]//Proceedings of the Information Retrieval Technology, 2010: 231-240.
[8] Hu J, et al. Personalized tag recommendation using social influence[J]. Journal of Computer Science and Technology, 2012, 27(3): 527-540.
[9] Guan Z, et al. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects[C]//Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, 2009.
[10] Zhou T, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4): 046115.
[11] Sigurbjrnsson B, R Van Zwol. Flickr tag recommendation based on collective knowledge[C]//Proceedings of the 17th international conference on World Wide Web, 2008.
[12] Durao F, P Dolog. A personalized tag-based recommendation in social web systems[C]//Proceedings of the arXiv preprint arXiv:1203.0332, 2012.
[13] Lappas T, K Punera, T Sarlos. Mining tags using social endorsement networks[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, 2011.
[14] 陈渊, 林磊, 孙承杰, 刘秉权. 一种面向微博用户的标签推荐方法[J]. 智能计算机与应用, 2011, 1(3): 21-26.
[15] 汪祥, 贾焰, 周斌, 陈儒华, 韩毅 基于交互关系的微博用户标签预测[J]. 计算机工程与科学, 2013, 35(10): 44-50.
[16] Yamaguchi Y, T Amagasa, H Kitagawa. Tag-based user topic discovery using twitter lists[C]//Proceedings of the Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on. 2011.
[17] Wu W, B Zhang, M Ostendorf. Automatic generation of personalized annotation tags for Twitter users[C]//Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics: Los Angeles, California. 2010: 689-692.
[18] Mihalcea R, P Tarau. TextRank: Bringing order into texts[C]//Proceedings of EMNLP, 2004.
[19] 涂存超, 刘知远, 孙茂松. 社会媒体用户标签的分析与推荐[J]. 图书情报工作,2013, 57(23): 24-30, 35.
[20] Zhang M, N Hurley. Avoiding monotony: improving the diversity of recommendation lists[C]//Proceedings of the 2008 ACM conference on Recommender systems, 2008.
[21] Smyth B, P McClave. Similarity vs. diversity, in Case-Based Reasoning Research and Development[C]//Proceedings of the Springer, 2001,2080: 347-361.
[22] Bradley K, B Smyth. Improving recommendation diversity[C]//Proceedings of the Twelfth National Conference in Artificial Intelligence and Cognitive Science, 2001.

基金

863项目(2014AA015204);国家自然科学基金(61402442);973项目(2014CB340406)
PDF(4016 KB)

577

Accesses

0

Citation

Detail

段落导航
相关文章

/