一种基于领域本体的稿件—审阅人相关度度量方法

肖刘明镜,周 志,邹小军,胡俊峰

PDF(1154 KB)
PDF(1154 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (2) : 163-168.
信息检索与问答系统

一种基于领域本体的稿件—审阅人相关度度量方法

  • 肖刘明镜1,周 志2,邹小军2,胡俊峰1,2
作者信息 +

An Ontology Based Measurement for Manuscript—Reviewer Relevance

  • XIAO Liumingjing1, ZHOU Zhi2, ZOU Xiaojun2, HU Junfeng2
Author information +
History +

摘要

随着稿件数量的不断增长,审阅人指派越来越成为会议组织者、期刊编辑和基金委员会的一项费时费力的工作,计算机辅助审阅人指派研究也由此得到了更多的关注。稿件—审阅人相关度度量是该研究中的一个重点问题。该文设计了一种基于领域本体的稿件—审阅人相关度度量方法。该方法由文档关键词提取、领域本体的自动构建及基于网络流模型的稿件—审阅人相关度计算等部分组成。初步实验表明,该方法在国家自然科学基金申请书申请代码分配的任务中取得较好表现,优于单纯基于关键词字串相似度的方法。

Abstract

With the growing amount of manuscripts, reviewer assignment becomes an increasingly laborious task for conference organizers, journal editors and grant administrators. To develop a computer-aided reviewer assignment for this purpose, the measurement of relevance between manuscripts and reviewers is a key issue. This paper presents a domain ontology based relevance measurement method. This method includes keywords extraction of the manuscript, domain ontology mining and manuscript-reviewer relevance measurement based on the network flow algorithm. Preliminary experiments show that this method performs well in the task of domain assignment of the NSFC proposals, and outperforms string similarity based method.

关键词

审阅人指派 / 相似度计算 / 领域本体 / 信息检索

Key words

reviewer assignment / similarity computation / domain ontology / information retrieval

引用本文

导出引用
肖刘明镜,周 志,邹小军,胡俊峰. 一种基于领域本体的稿件—审阅人相关度度量方法. 中文信息学报. 2017, 31(2): 163-168
XIAO Liumingjing, ZHOU Zhi, ZOU Xiaojun, HU Junfeng. An Ontology Based Measurement for Manuscript—Reviewer Relevance. Journal of Chinese Information Processing. 2017, 31(2): 163-168

参考文献

[1] Dumais S T, Nielsen J. Automating the assignment of submitted manuscripts to reviewers[C]//Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 1992: 233-244.
[2] Biswas H K, Hasan M. Using publications and domain knowledge to build research profiles: an application in automatic reviewer assignment[C]//Information and Communication Technology, 2007. ICICT'07. International Conference on. IEEE, 2007: 82-86.
[3] Ma J, Xu W, Sun Y, et al. An ontology-based text-mining method to cluster proposals for research project selection [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42(3): 784-790.
[4] Yarowsky D, Florian R. Taking the load off the conference chairs: towards a digital paper-routing assistant [C]// Proceedings of the Joint SIGDAT Conference on Empirical Methods in NLP and Very Large Corpora.1999: 220-230.
[5] Watanabe S, Ito T, Ozono T, et al. A paper recommendation mechanism for the research support systempapits[C]//Proceedings of the International Workshop on IEEE, 2005: 71-80.
[6] Tang W, Tang J, Lei T, et al. On optimization of expertise matching with various constraints[J]. Neurocomputing, 2012, 76(1): 71-83.
[7] Gruber T R. A translation approach to portable ontologyspecifications [J]. Knowledge acquisition, 1993, 5(2): 199-220.
[8] Snasel V, Moravec P, Pokorny J. WordNet ontology based model for web retrieval[C]//Proceedings of the International Workshop on Challenges in. IEEE, 2005: 220-225.
[9] Sanderson M, Croft B. Deriving concept hierarchies from text[C]//Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 1999: 206-213.
[10] Fu R, Qin B, Liu T. Exploiting multiple sources for open-domain hypernym discovery[C]//Proceedings of EMNLP. 2013: 1224-1234.
[11] He S, Zou X, Xiao L, et al. Construction of diachronic ontologies from People’s Daily of fifty years[C]//Proceedings of the 9th edition of the Language Resources and Evaluation Conference. 2014.
[12] Kleinberg J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM (JACM), 1999, 46(5): 604-632.
[13] Zhou Z, Zou X, Lü X, et al. Research on weighted complex network based keywords extraction[M]//Chinese Lexical Semantics. Springer Berlin Heidelberg, 2013: 442-452.
[14] Salton G, Buckley C. Term-weighting approaches in automatic text retrieval[J]. Information processing & management, 1988, 24(5): 513-523.
[15] Zhang H P, Liu Q, Cheng X Q, et al. Chinese lexical analysis using hierarchical hidden markov model[C]//Proceedings of the second SIGHAN workshop on Chinese language processing-Volume 17. Association for Computational Linguistics, 2003: 63-70.
[16] Ahuja R K, Magnanti T L, Orlin J B. Network flows: theory, algorithms, and applications[C]//Proceeding of the Prentice Hall,Inc.1993.

基金

国家自然科学基金(M1321005);国家自然科学基金(61472017)
PDF(1154 KB)

880

Accesses

0

Citation

Detail

段落导航
相关文章

/