推荐系统(recommender system)广泛应用于电子商务网站。目前流行的基于协同过滤的推荐算法利用用户的历史评分来预测用户对物品的喜好程度。随着互联网的发展,如今的电子商务网站越来越注重与用户的交互,于是产生了大量的用户生成内容(user generated content),如评论、地理位置、好友关系等。相对评分来说,用户对物品的评论从用户或者物品的各个角度具体表达了用户的观点。利用这些信息更有助于挖掘用户的喜好。该文提出一种基于词向量的方法挖掘用户评论信息,并结合协同过滤的方法设计新的推荐算法,来改善评分预测的效果。实验结果表明,该算法较大程度上提高了评分预测精度。
Abstract
Recommender system is widely used in e-commerce web sites. Traditional recommendation algorithms, e.g. collaborative filtering, predict the degree of user preference to an item based on user scoring history. Due to the development of the Internet, e-commerce websites pay more attention to user interactions, which leads to a great deal of user generated contents like comments, geographic locations and social relationships. Compared to the user rating, user comment demonstrates their opinions on different facets of the item. By taking full advantage of user generated contents, user preference can be further discovered. In this paper, we proposed an approach to using word-embedding to analyze review comments and design a novel system to predict the scores. Empirical experiments on a large review dataset show that the proposed approach can effectively improve the precision of the recommender system.
关键词
推荐系统 /
评分预测 /
词向量 /
用户评论
{{custom_keyword}} /
Key words
recommender system /
rating prediction /
word embedding /
user comment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Schafer J B,Konstan J, Riedl J. Recommender systems in e-commerce[C]//Proceedings of the 1st ACM conference on Electronic commerce. ACM, 1999: 158-166.
[2] Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM conference on Computer supported cooperative work. ACM, 1994: 175-186.
[3] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285-295.
[4] Lemire D, Maclachlan A. Slope One Predictors for Online Rating-Based Collaborative Filtering[C]//Processdings of the SDM. 2005, 5: 1-5.
[5] Kiritchenko S, Zhu X, Mohammad S M. Sentiment Analysis of Short Informal Text[J]. Journal of Artificial Intelligence Research, 2014, 50:723-762.
[6] Tang D, Qin B, Liu T. Learning semantic representations of users and products for document level sentiment classification[C]//Proceedings of the ACL. 2015:1014-1023.
[7] Wang L, Liu K, Cao Z, et al. Sentiment-Aspect Extraction based on Restricted Boltzmann Machines[C]//Proceedings of the ACL. 2015:616-625.
[8] Ganu G, Elhadad N, Marian A. Beyond the Stars: Improving Rating Predictions using Review Text Content[C]//Proceedings of the WebDB. 2009, 9: 1-6.
[9] Joachims T. A support vector method for multivariate performance measures[C]//Proceedings of the 22nd international conference on Machine learning. ACM, 2005: 377-384.
[10] Qu L, Ifrim G, Weikum G. The bag-of-opinions method for review rating prediction from sparse text patterns[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010: 913-921.
[11] McAuley J, Leskovec J. Hidden factors and hidden topics: understanding rating dimensions with review text[C]//Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013: 165-172.
[12] Koren Y, Bell R. Advances in collaborative filtering[M]. Recommender systems handbook. Springer US, 2011: 145-186.
[13] 陈庆章, 汤仲喆, 王凯,等. 采用数据挖掘的自动化推荐技术的研究[J]. 中文信息学报, 2012, 26(4):115-121.
[14] Zhang R, Gao Y F, Yu W Z, et al. Review Comment Analysis for Predicting Ratings[C]//Proceedings of the The 16th International Conference on Web-Age Information Management. Qingdao, 2015:247-259.
[15] Blei D M, Ng A Y, Jordan M I. Latentdirichlet allocation[J]. the Journal of machine Learning research, 2003, 3: 993-1022.
[16] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the Advances in Neural Information Processing Systems. 2013: 3111-3119.
[17] Herlocker J, Konstan J, Borchers A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of Reseach and Development in Information Retrieval. New York: ACM Press, 1999,230-237
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}